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ABSTRACT. We introduce a method called multi-scale local shape analysis for extracting
features that describe the local structure of points within a dataset. The method uses both
geometric and topological features at multiple levels of granularity to capture diverse types
of local information for subsequent machine learning algorithms operating on the dataset.
Using synthetic and real dataset examples, we demonstrate significant performance im-
provement of classification algorithms constructed for these datasets with correspondingly
augmented features.

1. INTRODUCTION

The goal of this paper is to introduce a preliminary version of what we call multi-scale
local shape analysis (MLSA), a method for extracting features of a dataset that describe
the local structure, both manifold and singular, of points within the dataset. MLSA is a
mixture of multi-scale local principal component analysis (MLPCA) and persistent local
homology (PLH). In this paper, we will describe both of these techniques and our merger
of them, and we will demonstrate the potential of MLSA on two synthetic datasets and one
real one.

The potential of these methods and their merger is investigated in the context of one of
the typical applications for data analytics: the classification problem for multi-dimensional
datasets. Thus the relevance of the developed techniques is assessed as the quality of the
resulting classification decision rule, measured by the expected test misclassification error,
its sensitivity and specificity (false positive and false negative error rates).

The quality of the solution of the classification problem significantly depends on the
choice of the features – specifically, on (1) extraction of new features that can contain
additional relevant information for the given problem, (2) pre-processing the features in
a way that makes them feasible for scalable and robust computations, and (3) removing
features that have little relevancy for the problem. While there are well-known mechanisms
of removing features (i.e., feature selection, see [23], [9]), the problem of constructing or
adding features [16] is much more challenging (see [18], [30]), since it often relies on
domain expertise, which is difficult to automate.

That is why, besides domain expertise, numerous geometrical approaches for feature
extraction have been employed to reduce the misclassification error rate of the decision
rule (e.g., kernel PCA [26], mutual information [30], manifold learning [19], [14], image-
derived features [8], [27]). The added benefit of these methods stems from the fact that
geometric methods can expose additional relevant information about shapes that are hidden
in the original data. The methods outlined in this paper capture both geometric (MLPCA)
and topological (PLH) structures of datasets, thus exposing the corresponding structures to
machine learning tools and boosting their performance.
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MLPCA. Principal Component Analysis (PCA) is a standard technique that takes a
point cloud X ⊆ RD as input, and returns information about the directions of data variation
and their relative importance. A standard output of PCA is an integer k and a projection of
the data onto the k-dimensional linear subspace of RD spanned by the k most important
directions. In this case, it is reasonable to say that the “intrinsic dimension” of X is k in the
sense that if one “zooms in” at a point in X, it will look like a k-flat. Of course, for some
datasets the intrinsic dimension varies as we move around the data (think of a plane pierced
by a line in R3). For almost any dataset, the notion of “intrinsic dimension” depends on
how much one wants to zoom in. For example, data sampled from a thin strip in R2 will
look either one- or two-dimensional, depending on the notion of local scale.

PLH. To complicate matters further, there are datasets X and points z for which the
statement “Locally at z, X looks like a k-flat” is simply not true, for any value of k. For
example, consider a dense sample from the intersection of two planes in R3. If z is any
point very near to the line of intersection, then MLPCA at almost any radius will return a 3-
flat, which is not a reasonable answer. The key issue here is that proximity to singularities
complicates the notion of local dimension. It is here where PLH proves useful.

The concept of PLH is built off of a traditional algebro-topological notion called local
homology groups; see, for example, Chapter 35 in [24]. These groups are meant to assess
the “local” structure of a point z within a topological space X. Among their nice proper-
ties is the fact that they are the same for every point z precisely when X is a topological
manifold. When X is not, these groups differ as we move z around, and in fact provide a
great deal of information about the local singularity structure at each non-manifold point.

On the other hand, the concept of “local” is a tenuous one in the noisy point-cloud
context, where what is meant by local depends entirely on an often impossible-to-choose
scale parameter. This issue was addressed in [5], where a tweakable radius parameter
R was added to the definition. The version of local homology that we will use in this
paper differs slightly from that in [5], but we feel it is simpler both for exposition and for
computational purposes.

Related work. To the best of our knowledge, this is the first attempt to use PLH in
the construction of features for classification problems. PLH has been used before [15]
in the context of dimension reduction. However, the goal there is to use PLH to de-
tect the dimension of the manifold which, under the assumptions of that paper, underlies
the given dataset. Our goal is quite different: to augment a more standard dimension-
detection method with PLH in order to understand features that may arise by dropping the
underlying-manifold assumption.

Another paper [6] uses PLH, and also a more complicated mapping construction to
transfer PLH information from one point to another, in an effort to learn the underlying
stratified structure of a space from a point sample of it. There is also some work [28]
which learns the stratified structure of a union of flats via Grassmannian methods.

Finally, a recent paper [2] uses PLH in the construction of a novel distance between
different road map reconstructions.

Outline. The structure of this paper is as follows. In Section 2, we briefly review the
ideas behind MLPCA, followed by a more in-depth description of PLH in Section 3. Then,
in Section 4, we combine the two techniques into MLSA and demonstrate its utility in
machine learning experiments involving three sample datasets, two synthetic and one real.
The results of these experiments are summarized in the tables of Section 6. We conclude
with some discussion in Section 5.
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Figure 1: Multi-scale local principal component analysis (MLPCA).

2. MULTI-SCALE LOCAL PRINCIPAL COMPONENT ANALYSIS

In multi-scale local principal component analysis (MLPCA) [22], one takes a point
cloud X, a particular point z and a radius R, and one computes PCA on the sub-cloud of
points within the Euclidean R-ball around z. This process is then repeated for multiple
radii and at many points to get a general profile of how the dataset looks at different lo-
cations in different scales (Figure 1). These multi-scale features may then be used in the
overall data analysis along with the original features (coordinates of the points).

This approach belongs to a growing family of multi-scale methods exploring and lever-
aging natural differences in information availability and its relevance on different scales
of the dataset in question. Multi-scale methods tend to reveal more accurate information
about the structure of the dataset than global (single scale) techniques.

The eigenvalues and eigenvectors of the covariance matrix provide a core set of features
which capture geometric information about the dataset. The first k eigenvectors of the co-
variance matrix define a k-dimensional hyperplane (through the center of mass) minimiz-
ing
∑
i(distance(xi, P ))2, where the infimum is taken over all k-planes P . This geometric

information can be significantly enriched by computing the eigenvalues and eigenvectors
for a set of multi-scale neighborhoods of points. Bassu et. al. [4] exploited multi-scale
local PCA features to define a support vector machine (SVM) decision rule that distin-
guished pointwise two unknown empirical measures (ground and vegetation) on the same
domain of LIDAR-generated surface images. The same authors later applied this technique
for classification of various types of satellite images of vessels [3]. These two image anal-
ysis experiments demonstrate that centralized multi-scale PCA features on data sets in Rn
provide necessary and sufficient conditions for datasets to have certain properties.

3. PERSISTENT LOCAL HOMOLOGY

This section contains a formal description of PLH features, which will be used in the
next section to augment MLPCA features in several example applications. We assume
that the reader understands homology groups, and we give only the briefest of reviews
of persistent homology. For a good reference on the former, see [24]; for the latter, see
[17] or [11]. All homology groups need to be computed over a field for the definition of
persistence to make sense, and that field is usually Z/2Z for computational reasons.

3.1. Persistent Homology. Suppose that X is a topological space equipped with a real-
valued function f . For each real number α, we define the threshold set Xα = {x ∈ X |
f(x) ≤ α}. Note that increasing α from negative to positive infinity provides a filtration
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of X by these threshold sets. For each non-negative integer k, the persistence diagram
Dgmk(f) summarizes the appearance and disappearance of k-th homology during this
filtration.

For example, take X to be a closed interval and f to be the function whose graph is
drawn in black on the left of Figure 2. Then the persistence diagram Dgm0(f), shown
as black squares on the right of the same figure, encodes the appearance and subsequent
merging of components under this filtration of the interval.

Figure 2: Left: the graphs of functions f (black) and g (red). Right: the persistence diagrams
Dgm0(f) (black) and Dgm0(g) (red).

Stability theorem. It turns out that the persistence diagramDgmk(f) is robust to small
changes in the input function. To make this more precise, we properly define a persistence
diagram to be a multi-set of dots in the extended plane, with the extra condition that there is
a dot of infinite multiplicity at each point along the major diagonal y = x. The persistence
of a dot u = (x, y) in a diagram is defined to be y − x, its vertical distance to the major
diagonal.

Given a p ∈ [1,∞), the p-th Wasserstein distance between two diagrams D and D′ is
then defined to be:

(1) Wp(D,D
′) =

[
inf

φ:D→D′
Σu∈D||u− φ(u)||p

] 1
p

,

where the infimum is taken over all bijections φ between the diagrams; note that such bi-
jections always exist, due to the infinite multiplicity dots along the major diagonal. Letting
p tend to infinity results in the bottleneck distance W∞ between the diagrams.

These distances are computed [17] via constructing a minimal-weight perfect matching
on a weighted bipartite graph, which means that the distances themselves are not useful
as an efficient tool. However, they are important for stating the stability properties of
persistence diagrams, as we now illustrate via an example.

Let g be the function whose graph appears in red on the left of Figure 2, with diagram
Dgm0(g) given by red circles on the right. Then the optimal bijection between the two
diagrams would be the one that matches the three red dots along the diagonal to the black
diagonal, and the other red dots to their closest black square, with the bottleneck distance
being the longest distance any red dot has to move during this process.

Note that the two diagrams are quite close under this metric, as are the two functions
under the L∞-metric. This is true in general:

Theorem 3.1 (Diagram Stability Theorem). Let f and g be two tame functions on a com-
pact space X. Then, for each non-negative integer k, we have:

W∞(Dgmk(f), Dgmk(g)) ≤ ||f − g||∞.
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See [12] and [11] for a more technical discussion of this theorem, and see [13] for
similar theorems, with more assumptions required, about Wp-stability.

3.2. Local Homology. We now describe local homology groups, before moving on to
their persistent version.

Let Y be a topological space embedded in some RD, fix some point z ∈ RD, a positive
real numberR, a non-negative integer k, and let SR(z) denote the sphere of radiusR about
z; that is, SR(z) = {y ∈ RD | ||y − z|| = R}. The k-th local homology group of Y, with
center point z and radius R, is defined to be

(2) LHk(Y, z,R) = Hk(Y ∩ SR(z)).

For a simple example, take Y to be an infinite plane in R3, z to be a point on that plane,
and R to be any positive number. Then LHk(Y, z,R) is rank one when k = 1 and is zero
otherwise. For a more complicated example, let z be the red point in Figure 3, and let r
and R be the radii of the smaller and large circles, respectively. Then LH0(Y, z, r) and
LH0(Y, z,R) are ranks two and four, respectively; both groups are zero for all other k.

Figure 3: Within the smaller sphere, the red point looks like part of a 1-manifold; within the larger
sphere, its local structure is more complicated.

Instabilities. As defined above, the local homology group LHk(Y, z,R) depends on
three inputs, and it turns out that it can change in an unstable fashion with each. The
example in Figure 3 shows that the local homology group can depend strongly on the
choice of radius. From the same figure, we can also see that it depends on the choice of
center point; for example, if we fix a small value of r and move the center point z gradually
along the line from its current location to the crossing point, the rank ofLH0(Y, z, r) jumps
suddenly from two to four. The group LH(Y, z,R) also clearly depends on the space Y.
For a stark example, replace Y in Figure 3 with a dense point sample U. Then, with
probability one, the intersection U ∩ SR(z) will be empty, and so LH0(U, z,R) will be
zero.

Fortunately, the persistent version of local homology, which we now describe, varies
continuously with these input parameters, and so is much more suitable to real-world data
analysis.

3.3. Persistent Local Homology. In what follows, we let Y be some compact space in
RD. For a working example, imagine that Y is the pair of crossing line segments on the
left side of Figure 4, but it might also be some point cloud U sampled from it. For the
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Figure 4: Left: Y is the intersecting line segments, z is the marked point, and SR(z) is the dashed
circle. Right: the persistence diagram PLH0(Y, z,R); the dot on top has infinite death time, and
the values of α1 through α4 are indicated along the birth-axis.

moment, we fix a value of R and a choice of z. The basic idea behind PLH is that, instead
of examining the connectivity of Y ∩ SR(z), we use a gradually thickening Y to filter
SR(z) and watch the homological information change during this process.

More precisely, we let dY : RD → R be the distance function which maps each point x
in RD to the distance dY (x) from its closest neighbor on Y. Abusing the notation above,
we let Yα denote the threshold sets for this function. Note that Y0 = Y, while Yα for
positive α represents a thickened version of Y; when Y is a point cloud, Yα is just the
union of closed balls of radius α around all of the points in the cloud.

For each fixed value of α, we form the intersection Yα ∩SR(z). We then let α increase
from zero to infinity and track the evolution of the homology groupsHk(Yα∩SR(z)), call-
ing the resulting persistence diagram PLHk(Y, z, R). Note that this is just an alternative
way of looking at the persistence diagram Dgmk(dY |SR(z)).

Example. With Y, z, and R as indicated in the caption for the left side of Figure 4,
we work through the computation of PLH0(Y, z,R). The original space Y ∩ SR(z) con-
sists of three points, which we will call A,B,C, working from left to right. A small
amount of thickening, say to α1, produces a fourth component D. Almost immediately
after, at α2, the components A and B merge, followed quickly, at α3 by the merging of
D and C. At that time, there are two growing components, and they eventually merge
when the entire sphere is filled in at α4. In summary, we have the birth-death pairs
{(0,∞), (0, α4), (0, α2), (α1, α3)}, which leads to the diagram shown on the right of the
same figure.

Stabilities. As promised above, we now show that persistence diagramsPLHk(Y, z, R)
are robust to small changes in any of their three inputs. Recall that the Hausdorff distance
dH(Y,Y′) between two compact subsets is defined to be the minimum ε such that Y ⊆ Y′ε
and Y′ ⊆ Yε,

Theorem 3.2. Let Y,Y′ be compact subsets of RD, let z, z′ ∈ RD, and let R,R′ > 0. Set
ε = dH(Y,Y′) and fix a non-negative integer k. Then:

W∞(PLHk(Y, z, R), PLHk(Y, z, R′) ≤ |R−R′|,
W∞(PLHk(Y, z, R), PLHk(Y, z′, R) ≤ ||z − z′||,
W∞(PLHk(Y, z, R), PLHk(Y′, z, R) ≤ ε.
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Proof. For the first inequality, we may assume that our fixed center point z is at the origin
in RD. We define two functions f, g : RD → R by f(x) = dY (Rx) and g(x) = dY (R′x).
Note that restricting f and g to the unit sphere S in RD is the same thing as restricting dY
to SR(z) and SR′(z), respectively. So by Theorem 3.1, we have

W∞(PLHk(Y, z, R), PLHk(Y, z, R′)) ≤ ||f |S − g|S ||∞.

To bound the right-hand-side, fix some x ∈ S, and let y0 and y1 be the closest points in
Y to Rx and R′x, respectively. Then

f(x) = ||y0 −Rx|| ≤ ||y1 −Rx||,
g(x) = ||y1 −R′x| ≤ ||y0 −R′x||.

Assume for the moment that f(x) ≥ g(x). Then

|f(x)− g(x)| ≤ |||y1 −Rx|| − ||y1 −R′x|||
≤ ||x||(|R−R′|) = |R−R′|.

An identical argument takes care of the case when g(x) > f(x), and taking a maximum
over S gives the claim.

A similar argument with the functions h(x) = dY (z + Rx) and j(x) = dY (z′ + Rx)
suffices for the second inequality.

Finally, it is easy to see that ||dY − dY ′ ||∞ ≤ dH(Y,Y′), for any pair of compact
spaces. Since restricting the domain of these two functions to SR(z) can only make the
L∞-distance smaller, a final application of Theorem 3.1 gives the third inequality. �

These results can of course be combined, along with the triangle inequality, to give a
bound for what happens when all three inputs are changed at once.

4. MLSA FEATURES IN MACHINE LEARNING

In what follows, we present two examples of synthetically generated point cloud datasets
that were sampled from simple stratified spaces. We use them to investigate the role of
MLPCA features and PLH features, separately and taken together, in SVM learning appli-
cations. We refer to the combination of MLPCA and PLH features as MLSA features. We
also include an example involving real data, namely, the LIDAR ground and vegetation
datasets from [10], and demonstrate improved performance results when MLSA features,
as opposed to MLPCA or PLH features on their own, are used to distinguish between the
two classes.

4.1. Data Preprocessing. The traditional approach to data pre-processing consists of scal-
ing all the variables (features) to a common range of values (such as [0,1] or [-1,1] etc.).
Alternatively, for each of the features, its empirical average can be subtracted from each
data point, and the result divided by the empirically calculated standard deviation: that
way, each coordinate of the data will have its mean equal to zero with variance equal to
one, as is the case for the standard normal distribution N(0, 1). The justification of these
pre-processing methods is numerical: the precision of computational operations is less
prone to errors if numbers of similar magnitude are being used.

It is also important to consider robustness of the decision rules under the conditions of
data variability. Although there is no comprehensive theory of treating such issues (some
data adaptation approaches are proposed in [29]), there are some empirical observations
(stemming from machine learning problems in rather diverse application areas including
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computer networking, medical diagnostics, computer vision etc.) that suggest that deliber-
ate pruning of available information can make the resulting decision rules more robust and
reliable, given the inevitable variability between distributions of training and test datasets.

Specifically, we consider discretizing or binning of the already scaled data (with their
first moments matchingN(0, 1)) along each of the available coordinates into several values
that are centers of equal-integral/equal-area segments of the standard normal density func-
tion N(0, 1). In this paper, we consider discretization into 10 equal-integral bins, so that
the boundaries [bi, bi+1] of these bins are such that the probability of anN(0, 1)-distributed
random value belonging to any of them is 1/10, i.e.,

1√
2π

∫ bi+1

bi

exp

(
−x

2

2

)
dx =

1

10
.

This condition is realized by the following bins boundary values:

−∞,−1.2816,−0.8416,−0.5244,−0.2533, 0,
+0.2533,+0.5244,+0.8416,+1.2816,+∞

Although discretization clearly reduces the information available in the given datasets,
the accuracy (error rate) of the classification decision rule constructed on the discretized
dataset is usually comparable with the accuracy of the classification decision rule con-
structed on the original dataset. Moreover, while the error rate is about the same, the
balance of sensitivity and specificity is usually more stable for the discretized dataset. One
can also argue that discretization provides graceful handling of outliers without losing the
pertinent information and retaining the general direction of the outlier. Finally, discretiza-
tion appears to be more robust to statistical deviations between training set and test set (the
key assumption of machine learning is that both these sets should have the same distribu-
tion).

4.2. Synthetic Dataset Examples. Datasets with Crossing Points. We sampled 200
points from four different spaces, each consisting of unions of line segments within a disk
of radius 0.4 centered at the origin. The four spaces are: a “+” shape formed from portions
of the x and y axes; an “X” shape formed by portions of the lines y = −2x and y = 3x
near the origin; a “Y” shape made up of portions of the lines y = −x and y = x above the
x axis together with part of the negative y axis; and a “triple” of line segments consisting of
the plus sign together with part of the line y = x. At each of the points in the datasets, we
performed MLPCA at three different radii (0.1, 0.2, and 0.3) and extracted the eigenvalues
and components of the corresponding eigenvectors, yielding 18 MLPCA features per point.
Furthermore, for each of the points at the same three radii, we performed PLH, extracted
the six most persistent 0-dimensional classes, and recorded as features the persistences of
these six classes. The reason for selecting six classes is that at every point in each of the
datasets, the 0-dimensional local homology groups are of rank at most three for the Y, at
most four for the + and the X, and at most six for the triple crossing. Thus, each of the
feature vectors has length 36.

In every instance, we trained a linear SVM classifier. We generated 50 examples from
each category of dataset for training and 15 of each type for testing, for a total of 10, 000
points for training and 3, 000 for testing for each of the four categories.

To evaluate the performance of our features in the SVM classification process, we com-
puted the maximum error rate for Type I (misclassify dataset A as dataset B) and Type II
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(misclassify dataset B as dataset A) errors. We also recorded the sensitivity (100% mi-
nus the Type I error rate) and specificity (100% minus the Type II error rate) as additional
measures of accuracy.

The results of the six pairwise data experiments are reported in Tables 1-6 in Section 6.
In every case, the combination of MLPCA and PLH features from MLSA led to the lowest
error rates, with PLH alone outperforming MLPCA alone in five out of the six cases (the
exception being the X vs. the triple crossing, see Table 5). The discretization procedure did
not appear to have a strong impact on the results: binning improved MLSA accuracy rates
in three out of the six cases, and tied with the no binning accuracy rates in one instance.

The lowest error rate, 0.03%, was achieved for two different pairs: the + and the triple
crossing, as well as the X and the Y. For the former, the underlying + shape is a subset of
the triple crossing shape, but regardless of location within each dataset, PLH detects the
presence of more local homology classes (at least at larger scales) in the case of the triple
crossing than in the + case. The same is true for the case of the X and the Y, as well as for
the pair consisting of the Y and the triple, which also saw an error rate under 1%. For the
case of the + and the X, it is likely that the low MLSA error rates (again, under 1%) were
largely due to differences in birth and death times between their respective local homology
classes.

The highest error rates (around 5−6%) occurred for the pairs consisting of the + and the
Y, and the X and the triple crossing. However, for the former, recall that both point cloud
types contain points on the negative y axis within a disk of radius 0.4. Since the largest
radius in the MLPCA and PLH computations was 0.3, such points on both the + and the
Y sufficiently far from the origin should indeed be indistinguishable from one another. For
the latter, the decrease in accuracy may be attributed to the fact that there are a number of
points in both the X and the triple crossing point clouds such that computing PLH at those
points results in local homology groups of the same rank.

Densely Sampled Line Segments with Points on One Side vs. Both Sides. For our
second synthetic dataset example, we obtained point clouds in two different ways: first,
by sampling 200 points from the line segment x = 0, 0 ≤ y ≤ 1, along with 200 points
from the unit square [0, 1]× [0, 1] (see Figure 5(a)); second, by sampling 200 points from
the same line segment as well as a total of 200 points from the rectangle [−1, 1] × [0, 1]
(100 points on either side of the line segment, see Figure 5(b)). The goal of the machine
learning experiment was to distinguish points on the densely sampled line segments in the
first case from points on the corresponding line segments in the second case.

In both cases, for radii 0.2 and 0.4, we computed MLPCA features (two eigenvalues and
components of the two associated eigenvectors) and PLH features (the persistence of the
most persistent 1-dimensional PLH class) for a total of 14 features at each of the 200 points
on the densely sampled line segments. The reasoning behind our choice of PLH features
is as follows. When PLH is computed at points on the densely sampled line segment in
Figure 5(b), it detects a high-persistence 1-dimensional class, whereas the 1-dimensional
local homology is trivial in the case of the line segment with points on only one side. Note
that 0-dimensional PLH data should be the same in both cases.

As in our previous set of examples, we trained a linear SVM classifier with 10, 000
points from each category of dataset for training and 3, 000 for testing. Once again, the
lowest error rate (4.07%) was achieved when both MLPCA and PLH features were uti-
lized, with PLH features alone still vastly outperforming MLPCA features alone (7.83%
vs. 33.83%); see Table 7. In this example, 10−bin discretization led to poorer accuracy
rates for both MLSA features as well as PLH features alone than when no binning was
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employed. For MLPCA features alone, the results were slightly better when binning was
utilized (31.4% vs. 33.83%).

(a) (b)

Figure 5: Densely sampled line segment with points on one side only vs. both sides.

4.3. LIDAR Image Dataset Results. In order to investigate the utility of PLH informa-
tion for feature construction in real data, we studied a dataset, introduced in [10], which
consists of a total of 639, 520 three-dimensional points that were collected via LIDAR and
labeled as either “ground” or “vegetation,” with 10 subsets of each type (see Figure 6).

For proof-of-concept purposes, we randomly sampled 1000 points from each of the 10
subsets in each category, for a total of 20, 000 points. We split the data into training and
testing groups in the same way as the authors of [10] and [4]; namely, we used the points
in data subsets 1, 2, 4, 6, and 8 for training, and subsets 3, 5, 7, 9, and 10 for testing. At
each of the two scales 2−3 and 2−4, we computed MLPCA features (three eigenvalues and
components of three eigenvectors) and PLH features (persistences of the most persistent 0-
dimensional class and the most persistent 1-dimensional class) at each of the 1000 points.
In addition, as in [4], we included the coordinates of the points in the list of features. This
yielded a total of 31 features.

For MLPCA features alone with discretization, the maximum of the Type I (misclassify
ground floor as vegetation) and Type II (misclassify vegetation as ground floor) error rates
was 4.95%. When the PLH features were added to the MLPCA features, the maximum
error rate was reduced to 4.31%, a 15% improvement. See Table 8 for details. Note that

Figure 6: LIDAR dataset: green points correspond to “vegetation,” black points correspond to
“ground.”
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taking only PLH features led to greatly reduced levels of accuracy compared to taking
either MLSA features or MLPCA features alone. This is likely due to the low number of
PLH features (namely, four) compared to the size of the datasets. In all cases, discretization
resulted in an improvement of accuracy rates on the order of 15− 20%.

5. DISCUSSION

The above results are promising in that multi-scale local shape analysis via a combi-
nation of MLPCA and PLH features consistently led to improved classification decision
results for both synthetic and real datasets.

The synthetic data experiments suggest future research to determine if more sophis-
ticated multi-scale local principal component features could improve detection of local
dimensions in singular spaces. Moreover, there are other methods of turning persistence
diagrams into features (for example, treating the diagram as a binned image [7], or using
ideas from algebraic geometry [1]) that may be more advantageous in different settings.

In this context, the advantages of 10−bin discretization are less pronounced. In fact, in
synthetic datasets, the discretization process led to poorer performance results, although it
did improve the classification quality for the real dataset. This is actually to be expected,
since the primary value of discretization is to make the decision rule robust in the case when
there are statistical differences between training and test data. With real life data, it is often
the case that there are such differences (e.g., one collects data for training, and at the time
of testing the data, the selection mechanism may be slightly different from that for training,
etc.). Thus, binning allows the decision rule to retain its robustness in such situations, as
in the LIDAR case, where various patches of ground and vegetation differ from each other.
If, however, there is a strong statistical match between training and test data (as typically
happens in synthetic data, where the match is enforced by sampling the same distribution),
then binning is useless: it throws away information for the sake of robustness, which is
irrelevant in the case of a perfect match, causing performance to suffer.

We have identified several steps that we plan to undertake in future work. Among them
is a more advanced version of the MLPCA approach used in this paper. It relies on features
defined in terms of normalized multi-scale constructs called Jones Beta numbers [20, 21,
22, 25]. Our preliminary experiments with this approach show improved classification
rates and lower testing error rates for a number of cases in which these are the only features
utilized. We plan to continue with additional experiments and investigate what happens
when the new features are combined with PLH features.

6. SUMMARY TABLES

The following tables summarize the results of the synthetic dataset experiments (Ta-
bles 1-7) and the LIDAR dataset experiment (Table 8). A value of 10 for “Bins” indicates
the utilization of 10-bin discretization.
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Table 1: + vs. X

Features Bins Sens. Spec. Max Errors
PLH No 99.00% 98.63% 1.37%

MLPCA No 87.90% 95.67% 12.10%
MLSA No 99.37% 99.30% 0.70%
PLH 10 89.13% 94.67% 10.87%

MLPCA 10 84.23% 93.60% 15.77%
MLSA 10 98.23% 98.63% 1.77%

Table 2: + vs. Y

Features Bins Sens. Spec. Max Errors
PLH No 89.23% 92.93% 10.77%

MLPCA No 87.83% 94.23% 12.17%
MLSA No 93.90% 97.50% 6.10%
PLH 10 85.87% 97.23% 14.13%

MLPCA 10 82.27% 91.33% 17.73%
MLSA 10 93.93% 98.87% 6.07%

Table 3: + vs. Triple

Features Bins Sens. Spec. Max Errors
PLH No 99.73% 99.43% 0.57%

MLPCA No 86.67% 96.80% 13.33%
MLSA No 99.83% 99.93% 0.17%
PLH 10 99.97% 99.77% 0.23%

MLPCA 10 86.43% 95.27% 13.57%
MLSA 10 99.97% 99.97% 0.03%

Table 4: X vs. Y

Features Bins Sens. Spec. Max Errors
PLH No 95.20% 98.93% 4.80%

MLPCA No 79.17% 93.77% 20.83%
MLSA No 99.97% 100.00% 0.03%
PLH 10 94.67% 97.77% 5.33%

MLPCA 10 81.50% 94.80% 18.50%
MLSA 10 99.97% 99.97% 0.03%
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Table 5: X vs. Triple

Features Bins Sens. Spec. Max Errors
PLH No 89.13% 92.03% 10.87%

MLPCA No 90.00% 92.53% 10.00%
MLSA No 94.20% 98.30% 5.80%
PLH 10 89.50% 93.90% 10.50%

MLPCA 10 92.60% 93.30% 7.40%
MLSA 10 95.00% 98.73% 5.00%

Table 6: Y vs. Triple

Features Bins Sens. Spec. Max Errors
PLH No 98.17% 100.00% 1.83%

MLPCA No 92.70% 91.37% 8.63%
MLSA No 99.23% 100.00% 0.77%
PLH 10 97.47% 100.00% 2.53%

MLPCA 10 95.77% 87.57% 12.43%
MLSA 10 99.13% 100.00% 0.87%

Table 7: One Side vs. Both Sides

Features Bins Sens. Spec. Max Errors
PLH No 92.17% 99.73% 7.83%

MLPCA No 66.17% 86.03% 33.83%
MLSA No 95.93% 98.73% 4.07%
PLH 10 91.67% 99.73% 8.33%

MLPCA 10 68.60% 83.97% 31.40%
MLSA 10 95.13% 98.73% 4.87%

Table 8: LIDAR

Features Bins Sens. Spec. Max Errors
PLH No 92.80% 74.04% 25.96%

MLPCA No 94.28% 98.86% 5.72%
MLSA No 94.90% 98.56% 5.10%
PLH 10 92.98% 78.04% 21.96%

MLPCA 10 95.05% 99.06% 4.95%
MLSA 10 95.69% 99.14% 4.31%
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