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Abstract

We propose a graph spectral representation of time series data that 1) is parsimoniously encoded
to user-demanded resolution; 2) is unsupervised and performant in data-constrained scenarios; 3) cap-
tures event and event-transition structure within the time series; and 4) has near-linear computational
complexity in both signal length and ambient dimension. This representation, which we call Laplacian
Events Signal Segmentation (LESS), can be computed on time series of arbitrary dimension and origi-
nating from sensors of arbitrary type. Hence, time series originating from sensors of heterogeneous type
can be compressed to levels demanded by constrained-communication environments, before being fused
at a common center.

Temporal dynamics of the data is summarized without explicit partitioning or probabilistic modeling.
As a proof-of-principle, we apply this technique on high dimensional wavelet coefficients computed from
the Free Spoken Digit Dataset to generate a memory efficient representation that is interpretable. Due
to its unsupervised and non-parametric nature, LESS representations remain performant in the digit
classification task despite the absence of labels and limited data.

1 Introduction

The historical development of machine learning algorithms on time series data has followed a clear trend
from initial simplicity to state-driven complexity. For instance, limitations in the Hidden Markov Model (see
[27] for a survey) for modeling long range dependencies motivated the development of more complex but also
more expressive neural networks, such as Recurrent Neural Networks [6] or Long Short-Term Memory model
[15]. In this parametric learning framework, success in modeling temporal data has been largely dictated by
the model’s ability to store appropriate latent states in memory, and to correctly transition between states
according to underlying dynamics of the data.

Among gradient based models [10], interpreting these high dimensional latent states, as well as relating
them to observations, remains a difficult area of research. Moreover, modeling dependencies within com-
plex temporal data, such as speech audio [20] and financial pricing movements, requires a large number of
observations, a requirement which often limits their application in real-life scenarios.

1.1 The LESS Algorithm

In this paper, we introduce an interpretable, unsupervised, non-parametric approach to time series segmen-
tation called LESS: Laplacian Events Signal Segmentation. LESS is motivated by multi-scale geometric
ideas, and its core computations are simple linear algebraic operations and convolution. The algorithm
featurizes temporal data in a template-matching procedure using wavelets. The resulting wavelet coefficient
representation is a trajectory in state-space. We interpret time steps of this representation as nodes of an
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underlying graph, whose graph structure is informed by events implicit in the original signal. A partitioning
of this graph via its Laplacian embedding results in event segmentation of the signal.

LESS takes inspiration from the intuitive insight that naturally occurring temporal data have few mean-
ingful event types, or motifs, and thus converting signals to event sequences has the potential to drastically
reduce transmission and storage requirements. We aim to derive the simplest unsupervised technique that
mirrors existing spectral clustering applications in image and graph data domains.

1.2 Outline

After surveying related work in Section 2, we give a detailed description of our proposed LESS technique in
Section 3. Then Section 4 gives an empirical analysis of the robustness-to-noise of LESS, as well as a careful
analysis of its computational complexity.

A first application of LESS is shown in Section 5. Using the Free Spoken Digits Dataset, we visualize
the temporal dynamics of spoken audio with its segmentation into meaningful events, such as strong vs
weak enunciations of ‘rho’ in ‘zero’, and show a clear contrast between representation trajectories in wavelet
coefficient space belonging to different spoken digits. Furthermore, we show LESS has superior performance
to Dynamic Time Warping [2] and to SAX [14] despite summarizing time series observations in far more
parsimonious fashion.

Finally, although we do not pursue it formally in this paper, Section 6 outlines ways that LESS has
strong potential to fit within upstream fusion pipelines of heterogeneous-modality time series. Hence, we
argue that LESS will make a key contribution to unsupervised classification, visualization, and fusion tasks,
especially in scenarios where training data is limited and/or communication between computational nodes
is constrained.
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2 Related Work

We briefly survey related work, and situate LESS within the context they define.

Connections to wavelet theory

Matching pursuit [5] projects signal data into its sparse approximation via a dictionary of wavelets. By
computing the approximation error using this dictionary, the algorithm greedily selects a new wavelet that
maximally reduces this error and adds it to the dictionary. Matching pursuit can encode a signal as its sparse
approximation using few wavelets. Our algorithm similarly encodes an input signal via a wavelet dictionary.
However, we further reduce this wavelet representation by computing its implicit motifs, summarizing it as
a sequence of categorical values.

Similarly, wavelet scattering [16] [4] also utilizes a wavelet dictionary to derive sparse encodings of sig-
nals. In comparison to wavelet representations, scatter representations have the additional properties of
being signal-translation invariant and capturing more complex frequency structure in the signal via its con-
volution network. We opt for wavelet scattering as the signal featurization procedure due to these additional
properties. From the perspective of wavelet scattering, the LESS representation is in essence a temporal
segmentation over the scatter coefficients.
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Connections to graph theory

There have been numerous works (e.g, [9]) that process signals defined on the nodes of a graph. Tootooni et al
[22] propose to monitor process drifts in multivariate time series data using spectral graph-based topological
invariants. Like LESS, the proposed technique also considers multidimensional sensor signals and interprets
an underlying state graph of the signal. By maintaining a window on an incoming stream of multidimensional
data, vector time elements within the window form nodes of the graph. The authors observe that changes in
the Fiedler number, a graph topological invariant computed from the graph’s Laplacian matrix, is informative
towards process state. The empirical analysis demonstrates effective fault detection in process monitoring
applications. LESS differs mainly by applying graph spectral techniques on wavelet-domain representations.
In this way, complex frequency dynamics within the signal are accounted for in the state graph, and an event
sequence representation of the signal in its entirety is generated by LESS, instead of a sequence of graph
topological statistics emitted over the course of a sliding window.

Lacasa et al [11] propose the visibility algorithm, a process which converts time series into a visibility
graph. Visibility graphs preserve the periodicity structure of the time series as graph regularity, while
stochasticity in the time series are expressed as random graphs by the process. The visibility graph is
invariant to translation and scaling of the time series, by which affine transformations of the time series lead
to the same visibility graph. In comparison, our approach also generates translation invariant representations
due to wavelet scattering. Periodicity within a time series is recognized as motifs by LESS, and as re-occuring
tokens in the resulting event sequence representation.

Connections to time series modeling

Fused LASSO regression for multidimensional time series segmentation [18] combines breakpoint detection
with computing breakpoint significance. After determining breakpoints implicit in the time series, their
technique relies on clustering within each detected segment to estimate breakpoint significance. Similar to
the proposed technique, LESS also seeks to address the multidimensional time series segmentation problem;
although we segment according to a set of motifs implicitly determined by the time series, instead of iden-
tifying new segments for each local change in trend - this allows the desired number of motifs to be preset
and easy identification of similar events, as they belong to the same motif.

Sprintz [3] is a time series compression technique leveraging a linear forecasting algorithm to be trained
online for a data stream. By combining Delta Coding - a stateless, error-based forecast heuristic common in
compression literature - with an autoregressive model of the form xi = axi−1 + bxi−2 + εi, the authors are
able to predict an upcoming delta as a rescaled version of the most recent delta, leading to a more expressive
version of Delta Coding.

This forecasting component of Sprintz named ‘Fast Integer REgression’ (FIRE) is further supported by bit
packing and Huffman coding to efficiently handle blocks of error values. In comparison, the objective of our
paper is to find structure within time series data by unsupervised learning, then aggressively decrease data
representation into a sequence of categoric tokens, corresponding to events. While our run-time scales worse
by viewing the time series in its entirety, LESS representations have the flexibility to be of predetermined
length, depending on user preference in the granularity of signal segmentation. Our representations also
convey frequency-temporal structures within the time series.

SAX [14] creates a symbolic representation of the time series via Piecewise Aggregate Approximation
(PAA). By dividing the time series data into equal frames, the PAA representation models the data with
a linear combination of box basis functions. By binning the PAA coefficients according to the coefficient
histogram, and setting the global frame size, lengths of SAX symbolic sequences are easily controlled. LESS
controls the length of its output representation by k, the set of motifs hypothesized to be within the data. By
decomposing the input signal via wavelet scattering, LESS featurization presents continuous signal structure
in the frequency-temporal domain rather than discrete frames in the temporal domain. Moreover, the
resulting wavelet coefficients are segmented by considering its relative location within the time series in
wavelet coefficient space, rather than segmentation by binning according to a global coefficient histogram,
as is the treatment of PAA coefficients by SAX.
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Figure 1: A flow diagram for LESS.

3 The LESS Algorithm

The high-level steps (Figure 1 shows a flow diagram) in the LESS algorithm are as follows. First, wavelet
scattering is applied to a raw time series x, resulting in a wavelet representation z. Then a weighted graph
Gz is computed from the wavelet representation, where the vertices of Gz are z[t], t = 1, . . . , n. The
weighted edges of Gz are computed from the self-similarity matrix of z followed by a varying bandwidth
kernel. Finally, spectral clustering is applied to extract an event sequence e, the final output of LESS. This
section describes each of these technical steps in details. Further information on the parameters involved
can be found in the Appendix.

3.1 Wavelet Representation

Wavelet scattering [4] creates a representation Φx of a time series x by composition of wavelet transforms.
The main utility provided here is reducing uninformative variability in the signal - specifically translation
in the temporal domain and noise components of the data. In the application of event segmentation, it is
sufficient for wavelet scattering to capture the low frequency structure of x. These properties are explained
in detail in the rest of this section. Throughout this paper, we refer to scatter representation Φx as ‘the
wavelet representation’, even if the terminology describes a broader family of wavelet-derived objects.

1. Φx enables frequency selection

The wavelet transform of x is the set of coefficients computed by convolving x with a wavelet dictionary
of J wavelets

{x ∗Ψλ(u)}λ
where each wavelet is indexed by frequency λ. Ψλ is convolved with the signal to emit coefficients corre-
sponding to frequency λ. Wavelet scattering re-applies wavelet transform on the coefficients of this procedure
with the same q wavelets, under the condition that an identical wavelet cannot be applied to the coefficients
more than once. For p applications of wavelet transform, a set of convolution coefficients are generated, with
set size

(
q
p

)
. We find that a small wavelet dictionary capturing low frequency components of x is sufficient,

leading to fast scatter computations and representations robust to instrumental noise (figure 7). In practice,
Φx is most effectively generated by 5 to 20 wavelets of lowest frequency, with Q = 2.

2. Φx is invariant to translations of x.

4



Figure 2: Top An example signal with it’s proposed segmentation e displayed below. The signal begins
and concludes with sinusoids of increasing oscillation, with an intermediate event. Bottom Normalized
wavelet representation of the above signal. Only coefficients emitted by twelve wavelets of low frequency are
considered. Notice the representation is invariant to non-stationarity and local trends, e.g. identical wavelet
coefficients belonging to yellow events are generated for both a decreasing and an increasing trend in the
signal. In addition, the entire signal follows an upward trend.

That is, for a translation c ∈ R and translated signal xc(u) = x(u−c), we have Φxc = Φx. As the major-
ity of wavelet techniques are covariant with translation, shifting x in time alters the wavelet representation.
As we seek to construct an underlying graph Gz capturing the dynamics of x, translation invariance is an
important property for leveraging spectral graph theory techniques. It’s relevance emerges when considering
the instability of Laplacian eigenfunctions L[v1,...,ve] under a changing graph Gz. Despite being the same
signal, shifts in the temporal domain of x directly replaces vertices of Gz, dependent on magnitude of the
shift |c| relative to length of the data. See below for a detailed discussion.

3. Φ linearizes deformations in signal space.

For a displacement field τ(u) (the deformation), Φ is Lipschitz continuous to deformations if there exists
C > 0 such that for all τ and x:

||Φxτ − Φx|| ≤ C||x|| sup
u
|∇τ(u)|

As an example, for a small deformation in the form of additive noise, Φx− Φxτ is closely approximated by
a bounded linear operator of τ . Like translation invariance, Φ’s linearization of deformations in signal space
further reduces undesirable variability in the construction of Gz.

Every signal x is mapped by wavelet scattering Φ to its wavelet representation Φx = z. In scatter
coefficient space Z, undesirable variability in the space of signals X is removed while the frequency-temporal
structure of signals is preserved.

5



|x ∗Ψ1|

|x
∗Ψ

2
|

|x ∗Ψ1|

|x
∗Ψ

2
|

|x ∗Ψ1|

|x
∗Ψ

2
|

Figure 3: A visualization of spectral clustering in LESS. Figure 4 applies similar analysis on wavelet repre-
sentations of real data. Left The wavelet coefficients of two wavelets is plotted as a trajectory in wavelet
coefficient space. Center Dotted circles denote the range of adaptive kernels. Spectral clustering partitions
wavelet coefficient space into non-convex regions according to population density. Right Solid lines denote
strong edges of Gz, dashed lines denote weak edges.

3.2 Wavelet Trajectory Graph Gz

Since z may be iterated over by its temporal index t, z is also a trajectory in wavelet coefficient space.
A change in frequency structure of the signal, from here on recognized as an ‘event’, is reflected in z by
movement within wavelet coefficient space. Moreover, re-occuring events return the trajectory to the same
region due to their similar frequency characteristics.

By segmenting z’s traversal to prevalent stationary and transitory patterns throughout time, we automate
the identification of event motifs. See figure 3 for an illustration, and figure 4 for trajectory plots belonging
to real data. The role of spectral clustering is identifying prevalent time series motifs. By segmentation of
z’s dynamics according to motif durations, a sequence of events in x is revealed.

The algorithm constructs an underlying graph Gz of the wavelet representation z; the n time elements
of z form the vertex set of Gz

V (Gz) = {z[t] | t = 1, . . . , n}
The weighted edges of Gz are determined by the affinity matrix W between time elements. The z[ta], z[tb]
pairwise affinity is

W (ta, tb) = exp

(
−d(z[ta], z[tb])

2

σωσta,tb

)
where z[t] ∈ Rp, p the wavelet dictionary size. d(·, ·) is the euclidean distance, σω a global scaling

parameter. σta,tb is the adaptive kernel size between time elements indexed at ta and tb.
An adaptive kernel size, in contrast to a global kernel size, mitigates overly or sparsely sampled local

neighborhoods. Following standard practice [25], we choose σa,b as adaptive to local neighborhood distances.
We compute the average distance between z[ta] and its C nearest neighbors NC(z[ta]) to approximate the
local sampling density, and denote this average neighborhood distance by Nta . The adaptive kernel is

σta,tb =
Nta +Ntb + d(z[ta], z[tb])

3

The interpretation of z as a graphGz is quite literal. Observe that signal events inform the graph structure
of Gz - stationary trends in x are easily captured as clique-like substructures in Gz, since stationary samples
of the signal are all proximal in wavelet coefficient space. 2-state periodic behavior in x may be reflected as
a cycle connecting two cliques.
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Figure 4: To interpret the dynamics of wavelet coefficients, we project the wavelet coefficient space with
time elements in R40 to 2 principal components via PCA. Colored contours in both figures correspond to
the same set of 7 motifs, as mapped by LESS ( red motif captures silence in the audio). To compute a
common set of motifs among wavelet coefficients of the digit ‘one’ and ‘two’ classes, we concatenate the
data. Differing density between digit classes cause different contour shapes of the same motif. Left 20
wavelet representations of the ‘one’ class is plotted in gray, with one example trajectory in black. Notice
the bulk of observations do not exhibit black or purple events. Right 20 wavelet representations of the
‘two’ class, with one example in black. This class exhibits an extra event, colored in red-green. Wavelet
coefficients of this class traverse toward the upper right direction in this projected space, differing from ‘one’.
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Figure 5: Affinity matrix W displaying pairwise affinities between time elements of figure 2. The matrix
center having high affinity is caused by the zero dominated middle interval of the wavelet representation.
The interruption of this matrix block is caused by a light blue event around sample 9000 in the original
signal. Diagonal lines of high affinity in the upper right quadrant (by symmetry of the similarity matrix,
also the lower left quadrant) implies a recurrence of wavelet coefficient structure early in the signal with end
of signal.

3.3 Event Identification

To exploit this insight on the connectivity and communal graph information, we leverage spectral clustering
to automate the partitioning of Gz, where a subset of time elements E ⊂ V (Gz) corresponds to an event
type in the data. At a high level, this is accomplished by embedding graph vertices by the eigenfunctions of
the graph Laplacian L. Specifically, with adjacency matrix A and degree matrix D of Gz, we compute the
normalized Laplacian

L = D−1/2AD−1/2

By applying eigendecomposition to L, we extract the eigenfunctions of the Laplacian. L[v1,...,vΓ], the Lapla-
cian embedding of eigenfunctions corresponding to the smallest Laplacian eigenvalues, contains information
regarding the stable cuts of Gz. See von Luxburg’s excellent survey [24] for a detailed treatment.

L[v1,...,vΓ] ∈ R|V (Gz)|×Γ is a ‘tall’ matrix whose rows denote embedding coordinates for individual vertices.
The eigenfunctions corresponding to larger eigenvalues yield more instable cuts, and therefore more noisy,
vertex partitions. For most naturally occuring times series, the first three eigenfunctions of the graph
Laplacian are sufficient. For the sake of clear notation, by Lv we refer to the low rank embedding of
L[v1,v2,v3].

In Gz, each connected component is encoded by a Laplacian eigenvector within eigenspace 0 (in other
words the geometric multiplicity of eigenvalue 0 matches number of connected components), where an eigen-
vector is an indicator vector with 1 if the vertex belongs to that component. For Laplacian eigenvectors
corresponding to non-zero eigenvalues, they partition connected components within Gz. The eigenvector of
smallest non-zero eigenvalue, the Fiedler vector, lists a partition from the most stable cut of Gz – a cut
partitioning a connected component that acts most like a bottleneck of the component, i.e. in the context of
the normalized Laplacian, a cut of maximal flow whose removal leads to two components of similar volume.

Finally, spectral clustering applies k-means clustering to Lv, assigning cluster memberships {Ei}i that
partition V (Gz). ∪iEi = V (Gz). The number k of cluster centroids, is a LESS parameter dictating the
number of motifs to be considered while segmenting x. For larger k, higher time-resolution events may be
observed, though overfitting in the form of short, spurious events is likely to occur.
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Figure 6: Four 1-minute audio recordings in the ESCAPE dataset, belonging to single vehicles of different
types moving in the same trajectory. THE RMS envelope is shown in orange.

By applying spectral clustering to the wavelet trajectory graphGz, we partition the wavelet representation
z, and by inversely mapping cluster assignments to the original temporal domain of the signal, LESS segments
x into a sequence of categoric tokens e, or event sequence of length l:

LESS(x) = e = {e[1], . . . , e[l]} e[i] ∈ {1, . . . , k}

4 Properties and Computational Characteristics

4.1 Moving Average and Noise

This subsection describes two LESS properties: applications to signals with constant moving average and to
noisy signals.

For signals with constant moving average through time, i.e. without trends, LESS event sequences tend
to reflect local changes in Root Mean Square envelope and energy of the signal. To visualize this, LESS
is applied to the recently-released ESCAPE dataset [28], a collection of live scenes where various vehicles
are observed by sensors of different modalities. For illustration purposes here, we focus only on the audio
modality and on four particular single-vehicle runs with vehicles of distinct types. In figure 6, four 1-minute
audio recordings, belonging to single vehicles of different types, are concatenated then annotated by LESS.
In the event sequences below each recording, common colors across observations denote events belonging to
the same motif.

LESS representations remain robust in the presence of significant noise. By omitting wavelets corre-
sponding to high frequency indices in wavelet scattering, the resulting wavelet representation z does not
account for high frequency structure in the original signal. Thus, while decreasing the number of necessary
convolution operations, the algorithm regularizes the representation.

We illustrate this desirable property via an observation of the MIT BIH electrocardiogram data [17].
As heart muscles contract in a cyclical pattern, the cardiac cycle of P wave, QRS complex, ST segment
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Figure 7: An observation of the MIT BIH electrocardiogram data with its event sequence. Plots below has
added Gaussian noise of variance σ = 0.2 and σ = 0.5. The cardiac cycle of P wave, QRS complex, ST
segment and T wave is consistently identified by the event sequence of events light blue, green, orange, and
brown respectively.

and T wave is consistently identified by the event sequence of events light blue, green, orange, and brown
respectively. In addition to the ECG signal, Gaussian noise of variance σ = 0.2 and σ = 0.5 was added. As
seen in Figure 7, LESS has identified all noticeable patterns within the original signal accurately; moreover,
it continues to output similar annotations under increasing noise.

4.2 Computational Complexity and Scaling with Ambient Dimension

We analyze the computational load of LESS in this subsection. Note that LESS first applies wavelet scattering
and then spectral clustering. In case of a multivariate signal, LESS computations scale linearly with size of
the ambient dimension. Altogether, we claim that LESS has the following computational complexity

O (Dt log t) +O(n3),

where D is the number of ambient dimensions, t the length of the time series, and n the number of time
steps in wavelet representation. We argue below that n� t in general practice, and thus the cubic term in
the complexity analysis should not be that daunting.

To see this claim, we note (see [16]) that scattering computation on 1-dimensional signals can be done in
O
(

1
3

m
t log t

)
, with a signal of length t and a scatter network of depth m. In practice, scatter networks of

depth m = 2 are optimal. Given a multivariate signal in RD, we may naively apply the scatter computation
D times to generate coefficients for each dimension of the input, showing that the wavelet scattering of
multivariate time series has complexity O (Dt log t) . In practice, we note that modern numeric packages
(e.g, kymatio [1]) for wavelet techniques leverage Graphic Processing Units (GPUs) to accelerate convolution
operations.

The remainder of the computation concerns neither the number of ambient dimensions D nor the length
of input data t. During wavelet scattering, the extraction of wavelet coefficients is preceded by convolution
with a low pass filter φ2J , where the original length is sampled at intervals 2J , J a scaling parameter set
prior. Given a length t signal, its wavelet representation has n time steps: with increasing J , n decreases
exponentially relative to t. For most reasonable values of J , we have n� t.

Given a D dimensional time series, there are D applications of wavelet scattering, each application with
the same wavelet dictionary of size p. What results is a dimension-wise concatenated wavelet representation
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Figure 8: Levenshtein distances between event sequences. Contiguous slices of 10 rows/columns correspond
to representations belonging to classes ‘zero’, ‘one’, and ‘three’ respectively. Lengths of event sequences
range from four events (tokens) to eight.

of Dp × n coefficients. To compute the affinity matrix for spectral graph analysis, the n vectors in RDp

are subtracted pairwise. Using vectorized subtraction, the distance matrix is computed in O(n2). After
transferring high dimensional coefficient information into connectivity relationships in the underlying graph
Gz, the spectral clustering portion of the algorithm becomes agnostic to the ambient dimension of the input
time series.

Lastly, spectral clustering’s computational bottleneck arises in acquiring a low rank approximation to the
affinity matrix. Using the Nystrom method [13], there is an inherent two step orthogonalization procedure,
where O(n3) operations is incurred. In total, LESS operates with computational complexity O (Dt log t) +
O(n3), as claimed.

5 Application

This section outlines a first proof-of-principle application for LESS. We focus on distinguishing spoken digits
from one another, using audio recordings, in an entirely unsupervised manner. That is, we use LESS to
derive a distance between spoken audio observations, and then observe that clusters formed by this distance
tend to correspond to digit type. The performance is especially encouraging when compared with two other
common methods for deriving distances between time series data, Dynamic Time Warping and SAX.

The Free Spoken Digits Dataset(FSDD) consists of spoken digit recordings in wav files at 8kHz. FSDD
contains 2,000 recordings from 4 speakers, each speaker saying digits 0 to 9 ten times per digit.

Representations derived from the proposed technique remain informative towards classification tasks. To
illustrate this, we compute within-class and between-class distances between event sequences. As example,
given parameters θ and k = 3 possible event types, {α, β, γ}, LESS maps signal x to an event sequence

[α, β, α, γ, . . . , β]

Such an event sequence contains categoric tokens corresponding to changes in the frequency structure of x,
and consecutive tokens of the same motif are replaced with one in their place. The Levenshtein distance [12]
is a standard method to compare any two token strings. Figure 8 shows the Levenshtein distance matrix
computed between LESS representations of 30 short audio strings, 10 each of digit types ’0’, ’1’, and ’3.’
The rows of the matrix are ordered by digit type. For our choice of hyperparameters, the event sequence
lengths range from four events (or tokens) to eight, ensuring transmission parsimony. Within each class, our

11
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technique generated event sequences that are, in expectation, 2 edits away. As seen in the block diagonal
structure of the matrix, between class distances are higher.

We compare to two other methods of computing distances between signal snippets, Dynamic Time
Warping (DTW, [2]) and SAX [14]. In brief, DTW produces an optimal match between the time indices
of two time series observations that is robust to non-linear temporal distortions, in addition to temporal
translation. Given a pair of signals (xi, xj), the DTW distance refers to the minimal cost required to align
time indices between xi and xj , or equivalently the matching cost of their optimal match. Note that DTW
can be computed on pairs of time series in any metric space; here we use it both in signal space X and in
wavelet coefficient space Z. SAX, on the other hand, creates a symbolic representation of the time series
via Piecewise Aggregate Approximation (PAA). The output of SAX is very similar to that of LESS in form,
namely a sequence of categorical tokens. Two such token sequences can then be compared using Levenshtein
distance as above.

Figures 9 and 10 shows the results of the comparison experiments. Each column of each figure corresponds
to a single experiment, where the task is to distinguish between 30 spoken instances of two digit types. The
top row in both figures uses the LESS-Levenshtein distance. The middle and bottom rows of Figure 9 use
DTW computed on the scattering space time series and the raw time series, respectively. Qualitatively, the
advantage of the LESS technique over the others at this task is clear. Furthermore, there are two other
practical advantages: 1) in wallclock time, the approximal DTW algorithm, Fast DTW [19], took an order of
magnitude of time longer than LESS while making

(
30
2

)
comparisons; 2) the advantage of LESS over DTW in

a communications-constrained environment should be clear: before DTW is computed on two signals arising
from different sources, the entire signal must be transmitted, while LESS requires transmission of only the
much shorter event sequence.

Figure 10 shows the same experiments in a comparison with SAX. A SAX parameter alphabet size is the
number of token types available for labeling fixed width windows. We set alphabet size to 10 following the
recommendation of SAX authors. We set representation lengths to be 100 (middle row) and 1000 (bottom
row). For representation lengths of 1000, within-class structure begins to emerge in distance matrices. Again,
the practical advantages of LESS in terms of computational speed and transmission in communications-
constrained environments hold.

6 Discussion

This paper presented LESS: Laplacian Events Signal Segmentation, a graph spectral representation of
arbitrary-dimensional time series data. Despite its unsupervised nature, LESS is shown to be highly perfor-
mant at a digit classification task, and especially so when judged in data and/or communication constrained
environments. Further work will proceed along several fronts:

6.1 Memory Issues

Despite the nice computational complexity analysis above, the current implementation of LESS presents
serious memory management issues on conventional hardware. An application of LESS requires the con-
catenation of multiple signals under consideration into one array, due to spectral clustering’s memory-less
nature. This is impractical for large batches: 1) the eigendecomposition term in the complexity analysis
O(n3) dominates the computation and 2) Gz may not be stored for the entire dataset X. Hence, on a
desktop computer with conventional hardware, LESS may process 5-10 minutes of audio sampled at 48,000
Hz within 30 minutes.

Proximal and batch versions of spectral clustering [8] [26] offer solutions to alleviate this, both for
maintaining adequate memory to store the graph Gz and for tackling matrix computations on large batches
of data. We will pursue these improvements in the near future.
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Figure 9: Each column corresponds to an experiment. Left column lists distances between spoken digits ‘one’
(row/col indices 0 to 14) and ‘six’ (row/col indices 15 to 29). Center column lists distances between ‘four’
and ‘seven’. Right column lists distances between ‘two’ and ‘five’. Top Levenshtein distance between LESS
event sequences Center Distances approximated by Fast DTW when it is applied to wavelet representation
time steps z[t], t = 1, . . . , n Bottom Signal distances approximated by Fast DTW. Notice in experiment
1, the observation at index 22 was considered far from all others in every distance.
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Figure 10: Each column corresponds to an experiment. Left column lists distances between spoken digits
‘one’ (row/col indices 0 to 14) and ‘six’ (row/col indices 15 to 29). Center column lists distances between ‘four’
and ‘seven’. Right column lists distances between ‘two’ and ‘five’. Top Levenshtein distance between LESS
event sequences, lengths varying from 4 to 10. Center SAX distance for alphabet size 10 and representation
length 100. Bottom SAX distance for alphabet size 10 and representation length 1000.
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6.2 Towards LESS as a Fusion Technique

The experiments above only display the benefits of LESS as a compression technique for tokenizing high-
dimensional time series before transmission down a stingy channel. Beyond this paper, we are developing
methods to use LESS within upstream fusion pipelines. The most immediate approach is to note that LESS
involves the computation of a weighted graph based of a distance matrix (see the Gz block in Figure 1).
When faced with n distinct time series x1, . . . ,xn of arbitrary dimensionality, one could simply run LESS
up to this block, producing n weighted graphs Gz1 , . . . Gzn . Any number of distance-graph-based upstream
fusion techniques (e.g, similarity network fusion [25], [23] or joint manifold learning [7], [21]) could then be
used to produce a fused weighed graph Gf . The final step of LESS could then be applied to produce the
fused event sequence. Experiments must be done to show that the resulting event sequence is indeed more
informative, at tasks such as the ones outlined above, than stovepiped event sequences.

In a communication-constrained environment, the transmission of entire weighted graphsGzi might be too
expensive. Hence further work needs to be done on this front, either by: 1) pursuing sparse representations
of the weighted graph, or; 2) creating an event-sequence-level fusion algorithm.
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7 Appendix

This appendix gives more details on the parameters involved in LESS. All parameters are inherited from
wavelet scattering and spectral clustering.

This paper implements wavelet scattering from the Kymatio package [1], and the parameter notations
are adopted from Kymatio documentation. Scaling parameter J ∈ Z dilates morlet wavelets by a factor of
2J . As a wavelet’s sinusoid component dilates, convolution with the signal leads to decorrelated scales. This
reveals the frequency structure of the signal at a higher resolution, while decreasing temporal resolution.
In practice J in the range [6, 10] is suitable for most signal data, while short signals require J < 6 due to
the lack of adequate temporal support for wavelets. Q is the number of first-order wavelets per octave. For
most applications, incrementally exploring q by multiples of 16 seems efficient. In practice, selecting the 16
wavelets indexed by lowest frequencies are sufficient.

σω, the spectral clustering parameter found in affinity matrix computations, controls the notion of global
proximity. For increasing σω, kernel radii surrounding points expand, resulting in larger edges in Gz. For
computing kernel sizes of a normalized pairwise-distance matrix, σω ∈ [0.2, 0.7] is optimal.

By examining the Laplacian eigenvectors L[v1,...,vΓ], Gz vertices are encoded into the Laplacian embedding
RΓ. For all LESS experiments shown, only Γ = 3 has been used; but membership information contained in
eigenvectors of larger eigenvalues may prove beneficial.

Lastly k, the number of motifs, is the number of clusters in k-means clustering applied onto the embedding
L[v1,...,vΓ]. In simple signal data that rarely exhibit novel events, such as FSDD, k = 7 is sufficient. On the
other hand, to transform entire audio scenes, larger k (≥ 12) is required.

The event sequence e may be interpreted as annotation of the n length wavelet representation z. While
running various classification tasks, we find e remains performant after discarding consecutive tokens of the
same motif, and only note when the event type has changed.
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