
manuscript submitted to Geophysical Research Letters

Topological Feature Tracking for Submesoscale Eddies1

Sam Voisin1, Jay Hineman1, James B. Polly1, Gary Koplik1, Ken Ball1, Paul2

Bendich1,4, Joseph D‘Addezio2, Gregg A. Jacobs2, Tamay Özgökmen3
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Key Points:8

• Topological Feature Tracking (TFT) is introduced as a way to identify features9

in scalar fields and associate those features through time.10

• We identify and track submesoscale eddies over 1-year of ocean surface velocity11

data computed via the Navy Coastal Ocean Model.12

• Eddy statistics provide insight on lifetime, speed, and distance traversed for un-13

derstanding eddy motions and scale interactions.14
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Abstract15

Current state-of-the art procedures for studying modeled submesoscale oceanographic16

features have made a strong assumption of independence between features identified at17

different times. Therefore, all submesoscale eddies identified in a time series were stud-18

ied in aggregate. Statistics from these methods are illuminating but oversample iden-19

tified features and cannot determine the lifetime evolution of the transient submesoscale20

processes. To this end, the authors apply the Topological Feature Tracking (TFT) al-21

gorithm to the problem of identifying and tracking submesoscale eddies over time. TFT22

identifies critical points on a set of time-ordered scalar fields and associates those points23

between consecutive timesteps. The procedure yields tracklets which represent spatio-24

temporal displacement of eddies. In this way we study the time-dependent behavior of25

submesoscale eddies, which are generated by a 1-km resolution submesoscale-permitting26

model. We summarize the submesoscale eddy dataset produced by TFT, which yields27

unique, time-varying statistics.28

Plain Language Summary29

Current state-of-the art procedures for studying small-scale features in the ocean30

do not take the effects of time into account. Instead, features like small vortices are stud-31

ied as a single population across many points in time. This method has provided oceanog-32

raphers with many valuable insights. New insights can be added by identifying vortices33

and then tracking them over time to study their behavior through an algorithm designed34

to identify and track features on a grid.35

1 Introduction36

Submesoscale eddies occupy length scales between large-scale forcings and micro-37

scale dissipation. Their larger, mesoscale counterparts are well-studied, yet submesoscale38

currents have, until recently, received less attention despite their importance. In addi-39

tion to influencing the transport of nutrients (Lévy et al., 2018) and pollutants (Poje et40

al., 2014), submesoscale currents form an important link in the turbulent energy cascade41

and the global oceanic circulation (see McWilliams, 2016, for a summary of submesoscale42

eddy dynamical theory, observational findings, and modeling approaches).43

Studies considering the temporal evolution of mesoscale eddies have been performed44

(e.g., Chelton et al., 2007; Kurian et al., 2011; Faghmous et al., 2015), but similar in-45

vestigations have yet to be done for the submesoscale. While dissipation-scale phenom-46

ena are typically unresolved and parameterized with subgrid-scale closure models, the47

“intermediate” length scales occupied by submesoscale eddies are able to be resolved in48

models such as the Navy Coastal Ocean Model (NCOM; Barron et al., 2006), among oth-49

ers. In these models, time tracking and statistical reporting of submesoscale eddies is not50

currently done but would be useful for model evaluation, e.g., inspecting performance51

of eddy viscosity and parameterized closure schemes. The method we describe herein per-52

mits comparison of eddy statistics between model-generated and observational data. Our53

algorithm provides a tool to (among other things) evaluate eddy dissipation by provid-54

ing lifetime metrics of these features in a similar (but more automated) way that Liu et55

al. (2021) found that horizontal model resolution was correlated with overestimation of56

vertical velocities. Furthermore, statistical summaries of transient submesoscale eddy57

behavior is needed for satellite altimetry data assimilation efforts (D’Addezio et al., 2019)58

and has motivated the statistical investigations in D’Addezio et al. (2020).59

In this study we apply the algorithm (henceforth referred to as Topological Fea-60

ture Tracking, or TFT) introduced in Soler et al. (2018) to the problem of submesoscale61

eddy identification and temporal association. In this way, we extend the study of D’Addezio62
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Figure 1: Illustration of TFT algorithm on a notional example: Left: Tracking two Gaus-
sian features on a time-ordered series of scalar fields. Right: Matching between persis-
tence diagrams (blue dots and orange dots) associated to scalar fields (bottom row) at
t = 2, 3, respectively.

et al. (2020) by computing statistics of eddy lifetimes and trajectories to supplement the63

time-independent statistical analysis presented therein. Using one year of NCOM sim-64

ulation data, we provide statistical summaries of eddy speed, lifespan, and displacement65

in aggregate over the Gulf of Mexico. We also provide analysis of these characteristics66

conditioned on season and regions selected for the presence of mesoscale features. While67

extending the technique used in D’Addezio et al. (2020) with the TFT-based method,68

we are introducing the community to the TFT approach in the context of surface-based69

submesoscale eddies.70

2 Method71

In this section we give a brief description of the TFT algorithm (Section 2.2), along72

with the elementary topological data analysis (TDA) concepts needed to understand it73

(Section 2.1). For more details on TFT and TDA in general, see Soler et al. (2018) and74

Edelsbrunner and Harer (2010), respectively. Finally, we describe the Okubo–Weiss pa-75

rameter used to generate the scalar fields to which we apply TFT (Section 2.3).76

2.1 Persistence Diagrams77

Suppose that f is a scalar field, that is, a real-valued function on some domain U .78

The domain can be of arbitrary dimension and shape and we need no assumptions about79

the smoothness of f . For a working example, suppose U is any of the two-dimensional80

squares shown on the left side of Figure 1, with the values of f indicated by the color81

bar. The persistence diagrams of f provide a compact summary of the location and im-82

portance of topological features as observed by f . More precisely, consider Uα = {x ∈83

U | f(x) ≤ α}. As the threshold value α increases, these create a nested filtration of84

sublevel sets that start with the empty set and finish with U itself. Along the way, topo-85

logical features (connected components and holes) are created and then subsequently de-86

stroyed, each of which corresponds (Milnor, 1963) to a critical point of f that occurs at87

a critical value. The birth and death critical values of each feature are plotted as dots88

in the plane, and the multi-set of such dots, along with the major diagonal y = x, forms89

the persistence diagram D(f) of the scalar field. Two such diagrams can be seen on the90

right side of Figure 1, where blue (orange) dots correspond to features in the scalar fields91

in the second (third) columns, bottom row. The persistence of a dot is the difference be-92

tween its death and birth values (i.e, the vertical distance to the major diagonal). Higher-93

persistence dots tend to be less likely to be noise. For example, all of the example scalar94
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Figure 2: Examples of TFT applied to the masked O.–W. dataset. Left to right: (1) Sub-
mesoscale eddies identified in the period 2016 January 1–18, depicted as blue points in
the Gulf of Mexico. Zones 1, 2 and 3 (west to east) are defined here and referenced in the
text. (2) Submesoscale eddies tracked via TFT, where blue solid line contours are eddies
identified at January 5, 2016 03:00, dotted blue line contours depict eddy locations over
the previous five days, and the corresponding eddy tracks are shown in red. This subset
depicts only tracks of 25km or longer. (3) Selection of tracks of eddies lasting for 15 days
or more. These relatively long lived tracks demonstrate both the meandering nature of
the eddy, and the persistent tracking capability of TFT.

fields have two prominent connected components indicated by the two dots far from the95

major diagonal.96

Persistence diagrams have two important properties that we exploit. First, they97

are stable to noise in a precise sense. The Wasserstein distance between two diagrams98

can be defined as the cost of an optimal matching between the dots in the diagrams, where99

dots can be matched to the major diagonal if needed; the right side of Figure 1 shows100

an optimal matching. Precise theorems (Cohen-Steiner et al., 2007) bound the Wasser-101

stein distance between two diagrams D(f), D(g) in terms of the `∞ distance between the102

scalar fields f, g. In particular, this guarantees that the diagrams associated to a smoothly103

time-varying sequence of scalar fields will themselves form a time-varying sequence, which104

facilitates the TFT algorithm. Second, various theorems (Edelsbrunner et al., 2006; Lau-105

denbach, 2013) guarantee the following: given a two-dimensional scalar field f and a thresh-106

old value ε, there exists a simplified scalar field g with exactly the same critical point struc-107

ture of f except that all critical points of persistence less than ε have been removed. For108

example, with ε being the distance between the major diagonal and the dotted line on109

the right side of Figure 1, the scalar fields in the top row on the left are the topologi-110

cal simplifications of the scalar fields in the bottom row.111

2.2 Topological Feature Tracking112

Now suppose that we have a time-ordered sequence f1, . . . fT of scalar fields, such113

as the four fields across either row on the left of Figure 1, all defined on the same do-114

main U . Computing persistence leads to a time-ordered sequence D(f1), . . . , D(fT ) of115

persistence diagrams. The user may choose a persistence threshold to topologically sim-116

plify the scalar fields as desired. Then the TFT algorithm connects critical points to pro-117

duce a series of tracks, as follows.118

Consider a time-adjacent pair of (possibly simplified) scalar fields fi and fi+1. Each119

dot in the two diagrams corresponds to a topological feature, and has an associated pair120

of critical points in U , one which created the feature and one which destroyed it. The121

lifted Wasserstein distance of Soler et al. (2018) defines the cost of associating two dots122

in D(fi) and D(fi+1) as a (user-specified) weighted combination of the distance between123
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the pair of dots in the persistence diagram and the geometric distance between the as-124

sociated critical points in the domain U . An optimal matching between the two diagrams125

is then computed via this cost function. If this optimal matching connects two dots, a126

track segment is drawn between their associated critical points. If it connects a dot at127

time i with the diagonal at time i+1, then a track segment ends. If it connects a dot128

at time i+1 with the diagonal at time i, a new track segment is started. The end re-129

sult, over all time steps in the sequence, is a set of tracks which move in time through130

the domain U .131

Figure 1 shows the tracks for our notional example, indicated as thick red lines on132

the left side of the figure. Figure 2 shows tracks for submesoscale eddies, identified by133

the same procedure and further described in the following sections.134

The matching procedure described above must be applied to each consecutive pair135

of persistence diagrams in the time series. Computationally, this may be done in par-136

allel so long as the time order is maintained. Once matching is completed for all con-137

secutive time steps, the matchings of associated critical pairs may be applied to coor-138

dinates in the domain to combine the track segments and form full tracks of the iden-139

tified features.140

2.3 Okubo–Weiss Parameter141

The Okubo–Weiss (O.–W.) parameter is one of many dynamical quantities used142

to define eddies and has been utilized in numerous studies (see Isern-Fontanet et al., 2003;143

Kurian et al., 2011; D’Addezio et al., 2020 and references therein). Aside from the well-144

established use of O.–W., we use this quantity to identify eddies because TFT utilizes145

information at critical points to calculate persistent homology and simplify noisy scalar146

fields, making the O.–W. parameter more suitable than those where a gradient (rather147

than a critical point) is associated with the feature of interest. Aditionally, D’Addezio148

et al. (2020) utilized O.–W. for eddy identification, and the extension of that work pre-149

sented herein maintains this approach for consistency.150

The O.–W. parameter is defined as151

W = S2
n + S2

s − ζ2 (1)

where Sn, Ss, and ζ are respectively the normal strain (Sn = ∂xu−∂yv), shear strain152

(Ss = ∂xv + ∂yu), and relative vorticity (ζ = ∂xv − ∂yu), with u and v being velocity153

components. When W < 0 the relative vorticity term overwhelms the shear terms, |ζ| >154

S2
n+S2

s , and indicates a flow dominated by rotation. By finding critical points (∂iW =155

0) in the negative portion of this field, TFT can rapidly identify rotationally dominant156

regimes without the need to mask fields based on additional criteria, i.e., Rossby num-157

ber or eddy shape, as discussed in the following section.158

3 Data & Procedure159

The dataset used as an input to TFT is a year-long simulation of the Gulf of Mex-160

ico generated by the Navy Coastal Ocean Model (NCOM), with three-hourly temporal161

resolution, spanning the 2016 calendar year. NCOM solutions have a spatial resolution162

of one kilometer, which permits submesoscale eddy generation, but does not fully resolve163

submesoscale dynamical features (see e.g., Capet et al., 2008 for additional discussion).164

Results presented herein summarize the behavior of “submesoscale” eddies permitted165

by a 1-km resolution model, but note that results are dependent on the resolution of the166

input solution data.167

Two derivative datasets were generated from the NCOM simulation. The first is168

a replication of the dataset generated in D’Addezio et al. (2020), in which eddies are iden-169
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tified using closed contours of a filtered, normalized O.–W. field computed from small-170

scale velocities. Those identified eddies must meet criteria for O.–W. value, Rossby num-171

ber, and circularity of the closed contour. All non-eddy regions are masked, and thus we172

call this the “masked” dataset (and see D’Addezio et al., 2020 for details). By apply-173

ing TFT to the “masked” dataset, the critical point (eddy) identification step is deem-174

phasized as the features of interest are the only suriving data in the masked fields, thus175

the novel TFT contribution is primarily the temporal association between timesteps.176

The second dataset is a less restrictive version of the first in which the same pro-177

cedure is followed until the normalized O.–W. field is generated. We refrain from apply-178

ing the second smoothing filter, any circularity tests, or masking of this dataset; we there-179

fore refer to it as “unmasked” and task the TFT algorithm to perform eddy identifica-180

tion as described in Section 2.2. By limiting TFT to the negative portions of the unmasked181

scalar fields, the algorithm identifies critical points corresponding to rotationally dom-182

inant flow structures, per Section 2.3. It is known however that submesoscale eddies are183

ageostrophic, i.e., Ro ≈ ζ/f >> 1 (where Ro is the local Rossby number and f is the184

Coriolis frequency; see Capet et al., 2008; Zhong & Bracco, 2013; Gula, Molemaker, &185

McWilliams, 2014). Unlike the masked dataset, the unmasked dataset does not impose186

the ageostrophic requirement.187

Limiting the O.–W. field to only negative values focuses on eddies, and results in188

improved track quality, which is subjectively determined, e.g., by limiting the number189

of ephemeral tracks lasting only one or two timesteps, or eliminating temporal associa-190

tivity between eddies that are spatially far apart. Note that the persistence threshold191

(ε) controls the number of critical points identified at a given timestep, and some exper-192

imentation was performed to remove noise from the Okubo–Weiss fields without remov-193

ing eddies of interest.194

The output of the TFT algorithm is a set of tracks representing the historical be-195

havior of individual submesoscale eddies in the Gulf of Mexico. Two mild postprocess-196

ing routines were applied to this set of tracks. We first removed tracks which began or197

ended on the boundary of the Gulf of Mexico. These erroneous tracks are caused by the198

abrupt end of the scalar field at its edges. We also applied a filter which removed any199

tracks whose average speed was greater than the maximum surface speed at any point200

in the NCOM simulation. These tracks which have been filtered out due to excessive speeds201

are nonphysical, and are a numerical artifact of the temporal matching process. A sub-202

set of the resulting tracks can be seen in the middle and right images of Figure 2.203

4 Results204

In this section we provide insights gleaned from tracking submesoscale eddies iden-205

tified in the Okubo–Weiss field. All figures correspond to results obtained from the masked206

O.–W. dataset. In Section 4.1 we present seasonality studies, and in Section 4.2 we pro-207

vide descriptive statistics of submesoscale eddy behavior observed through tracks iden-208

tified using TFT on both masked and unmasked datasets.209

4.1 Identifying Seasonal Mesoscale Patterns via Submesoscale Tracks210

Mesoscale features are responsible for transporting submesoscale eddies through-211

out the Gulf of Mexico (Zhong & Bracco, 2013; Gula et al., 2014; McWilliams, 2016).212

By tracking those submesoscale eddies, we also gain insight into the evolving mesoscale213

phenomena, as seen in Figure 3. Each frame of Figure 3 represents three months of sub-214

mesoscale eddies with track length greater than or equal to 25 km in length. In winter,215

the greatest track density appears in the Loop Current, which by spring has split into216

a southern current exiting the gulf to the east, and a mesoscale eddy further north off217

the western coast of Florida. In summer this large eddy has moved west with less track218
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Figure 3: Illustration of submesoscale eddy behavior in aggregate over four seasons of the
masked dataset. Tracks shown have been filtered to include those ≥ 25 km.

density, compensated by greater track density in the current to the northwest of Cuba.219

In the fall this large mesoscale eddy moves further west, deeper into the Gulf, while the220

current near Cuba carries a high density of eddies toward the Gulf Stream.221

Submesoscale tracks do not follow any consistent directional pattern. Their tra-222

jectories appear to be governed by large-scale background flow, dictated primarily by both223

the synoptic jet and the interior mesoscale eddies. This is in contrast with the mesoscale224

eddy field which is known to propagate westward outside the influence of boundary cur-225

rents (Chelton et al., 2007). Our results demonstrate the utility of submesoscale eddy226

tracks for characterizing mesoscale dynamics, such as the seasonality of the Loop Cur-227

rent.228

To highlight seasonal differences we sum the track densities for winter and spring,229

and then difference that sum by the combined densities from summer and fall. This dif-230

ference in track density is shown in Figure 4. Most notable is the Loop Current fluctu-231

ation, but the lack of a clear signal in the western gulf is also apparent.232

4.2 Statistical Summary of Tracks233

Statistics of tracks generated by TFT are shown in Table 1. We calculate track statis-234

tics in aggregate, but also on subsets of the tracks. We subset temporally (by season)235

and spatially (in three “zones” associated with large scale features). These zones are la-236

beled Zone 1, Zone 2, and Zone 3 from west to east, and are shown in the left image of237

Figure 2. Zone 1 captures an irregularly shaped, mesoscale flow pattern. Zone 2 is an238

intermediate region, and Zone 3 attempts to capture the Loop Current structure.239
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Figure 4: Seasonal difference in masked dataset track density, computed as (winter +
spring) − (summer + fall). Tracks shown have been filtered to include those ≥ 25 km.

–8–



manuscript submitted to Geophysical Research Letters

Broadly, eddies in the Gulf of Mexico tend to move fastest in the spring and sum-240

mer. However, the seasonal variance is low. Overall, submesoscale eddy velocity is O(0.5241

m/s), furthering previous results which showed mesoscale and submesoscale horizontal242

velocities to be similar (Capet et al., 2008). If, as we have documented, the submesoscale243

eddy motion is largely a function of the jet and mesoscale eddies (Figure 2), then these244

horizontal velocities are of similar orders of magnitude.245

Lifespans tend to be longer in the winter and fall. This is likely due to the known246

relationship between submesoscale generation and maintenance, and the depth of the mixed247

layer (McWilliams, 2016). Using this relationship, one can calculate a mixed-layer de-248

formation radius that dictates the maximum size of submesoscale eddies as a function249

of mixed-layer depth. In the summer, the mixed layer shoals in the presence of strong250

surface heating, dramatically reducing the mixed-layer deformation radius. With a 1-251

km horizontal resolution, this NCOM simulation cannot support the generation and main-252

tenance of such small features, leading to a decline in the number of identified subme-253

soscale eddies during this season (D’Addezio et al., 2020). This is evident in the season-254

ality of the submesoscale eddy sample size shown in Table 1 (last column).255

While there is some numerical component to the seasonality we observe herein, de-256

creased eddy activity in summer has also been found in observational measurements of257

submesoscale turbulent kinetic energy spectra (Callies et al., 2015), and is theoretically258

expected. In contrast, winter features much deeper mixed layers, and can therefore sup-259

port the creation of more, relatively larger submesoscale eddies and allow them to prop-260

agate longer in the more favorable mixed layer environment. It is expected that these261

seasonal differences in sample size will be more pronounced with increased temporal out-262

put frequency.263

Some notable differences exist between tracking results for the masked and unmasked264

datasets. Compared with the masked fields, distances, lifetimes, and speeds are greater265

for the unmasked fields. Near the Loop Current (Zone 3) differences in speed between266

masked and unmasked datasets are relatively attenuated compared to regions away from267

persistent mesoscale structures (Zones 1 and 2). Lifespan and displacement remain greater268

for the unmasked dataset in Zone 3, making the similarity in speed between these two269

datasets somewhat unique.270

The unmasked dataset also contains more samples and greater variance in nearly271

all cases. This is likely due to the limiting nature of traditional eddy identification meth-272

ods (e.g., D’Addezio et al., 2020). In these traditional methods, identification criteria273

(e.g., “circularity”) may change over the lifetime such that identification criteria are not274

satisfied throughout the lifespan of the eddy. The statistical effect of this is that a sin-275

gle, long-lived eddy is broken up into multiple, short-lived parts. While the unmasked276

dataset is less restrictive and contains more samples, the masking procedure can shorten277

the lifespan and displacement of long-lived eddies, as observed in the statistical summaries278

shown herein. Further work is required to quantify the influence of this difference in eddy279

identification.280

5 Conclusions281

We introduce Topological Feature Tracking to the oceanographic community by282

applying it to NCOM solutions of the Gulf of Mexico. TFT minimizes preprocessing of283

data by simplifying noisy scalar fields and tracking critical points between timesteps. Us-284

ing TFT, we compute eddy statistics of lifetime, displacement, and speed for 1 year of285

NCOM solutions. Insights on submesoscale eddy propagation speeds of 0.5 m/s, life-286

time of 18 hours, and displacement of 30 km are novel results. Seasonal differences are287

summarized and compared with models and observations.288
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Speed (m/s) Lifespan (h) Displacement (km) Sample Size
Unmasked Masked Unmasked Masked Unmasked Masked Unmasked Masked

Mean (St. Dev.) Mean (St. Dev.) Mean (St. Dev.) Mean (St. Dev.) Mean (St. Dev.) Mean (St. Dev.)
GoM Aggregate 0.4436 (0.2343) 0.3808 (0.2124) 17.8 (28.8) 12.3 (26.0) 30.9 (60.4) 16.2 (31.4) 655,727 119,775
GoM Winter (DJF) 0.4184 (0.2333) 0.3760 (0.2171) 19.0 (30.5) 13.5 (27.6) 31.3 (62.0) 17.4 (33.7) 182,522 31,319
GoM Spring (MAM) 0.4726 (0.2367) 0.3949 (0.2167) 16.7 (25.7) 11.1 (20.7) 31.4 (58.5) 15.4 (27.3) 171,134 31,292
GoM Summer (JJA) 0.4703 (0.2354) 0.3928 (0.2156) 15.8 (25.1) 11.6 (27.6) 29.1 (54.9) 15.8 (32.8) 154,453 28,545
GoM Fall (SON) 0.4133 (0.2241) 0.3586 (0.1966) 19.4 (33.3) 13.0 (27.5) 31.6 (66.0) 16.1 (31.7) 147,618 28,619

Zone 1 Aggregate 0.4316 (0.2154) 0.3457 (0.1689) 18.4 (30.0) 12.8 (26.4) 30.9 (58.9) 15.2 (28.6) 141,626 27,081
Zone 1 Winter 0.3862 (0.2034) 0.3205 (0.1598) 20.6 (33.7) 14.6 (29.3) 31.1 (61.2) 16.1 (30.1) 38,219 6,859
Zone 1 Spring 0.4556 (0.2189) 0.3526 (0.1697) 17.8 (26.8) 11.3 (20.2) 32.0 (58.2) 13.8 (22.9) 39,754 7,848
Zone 1 Summer 0.4622 (0.2187) 0.3596 (0.171) 16.3 (25.7) 11.6 (26.5) 29.5 (53.7) 14.4 (29.1) 35,998 6,737
Zone 1 Fall 0.4200 (0.2106) 0.3501 (0.1727) 19.1 (33.4) 14.2 (29.8) 30.8 (63.0) 17.2 (32.8) 27,655 5,637

Zone 2 Aggregate 0.4315 (0.2172) 0.3725 (0.1887) 16.8 (29.0) 12.8 (27.1) 26.6 (47.8) 16 (30.9) 24,571 5,773
Zone 2 Winter 0.4137 (0.2101) 0.3528 (0.1745) 18.2 (29.8) 13.8 (26.7) 27.5 (47.4) 16.1 (27.3) 6,601 1,506
Zone 2 Spring 0.4304 (0.2187) 0.3523 (0.1837) 15.6 (25.9) 12.2 (20.9) 25.2 (44.6) 14.4 (22.4) 5,576 1,443
Zone 2 Summer 0.4887 (0.2317) 0.4427 (0.2218) 13.6 (21.6) 11.3 (28.8) 25.2 (46.5) 17.0 (35.2) 5,481 1,245
Zone 2 Fall 0.4040 (0.2019) 0.3542 (0.1631) 18.8 (34.9) 13.6 (30.7) 27.8 (51.6) 16.6 (36.5) 6,913 1,579

Zone 3 Aggregate 0.5167 (0.2513) 0.4917 (0.2566) 14.8 (24.3) 12.0 (22.3) 29.3 (52.9) 21.0 (38.0) 93,578 19,608
Zone 3 Winter 0.5196 (0.2581) 0.5177 (0.2642) 16.4 (25.6) 12.5 (23.6) 33.1 (59.6) 23.1 (42.2) 29,903 5,849
Zone 3 Spring 0.5621 (0.2464) 0.5459 (0.2562) 13.8 (21.2) 10.9 (17.2) 30.5 (54.0) 21.9 (37.6) 23,629 4,813
Zone 3 Summer 0.5275 (0.2458) 0.4833 (0.2536) 13.5 (21.5) 11.3 (22.2) 27.1 (47.8) 19.3 (35.5) 22,881 4,773
Zone 3 Fall 0.4348 (0.2333) 0.4023 (0.2238) 15.3 (28.8) 13.2 (25.4) 23.7 (43.8) 18.8 (34.5) 17,165 4,173

Table 1: Statistics (calculated seasonally and in aggregate) of submesoscale eddy tracks
across the Gulf of Mexico (three zones as depicted in Figure 2.)

Further investigation should focus on the differences in eddy identification meth-289

ods, and how TFT can be improved based on these efforts. Also, modifications to the290

Lifted Wasserstein distance function (to penalize incorrect matchings in a nonlinear man-291

ner) should improve the method broadly. Additionally, an automated method of suggest-292

ing or selecting weight parameters and the persistence threshold may be explored.293
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