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Abstract—Coordinating multiple sensors can be expressed as a
reinforcement learning [RL] problem. Deep RL has excelled at
observation processing (for example using convolution networks
to process gridded data), but it suffers from sample inefficiency.
To address this problem, we topologically decompose the total
observation space into overlapping components, using the de-
tection of co-incidence or spatial adjacency of the sensors to
construct a stratified decomposition analogous. By allowing the
RL agent to learn within the context of this decomposition and
take advantage of it through action masking, we achieve positive
reward and efficient gains over the learning process. We demon-
strate performance and efficiency gains through several exper-
iments using a bespoke game implementation that combines
RLlib, Griddly, and Gymnasium. We draw analogies between
our games and more general co-incidence in sensing space, time,
or modality. We find that our decomposition can be combined
with modern RL algorithms to learn high-performing sensor
control policies, and our pipeline scales well as the number of
sensors grows.
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1. INTRODUCTION AND BACKGROUND
Coordinating multiple sensors can be expressed as a model-
free, deep reinforcement learning [RL] problem. Deep means
that deep neural networks are trained to optimize reward.

* Work done during internship at GDA
979-8-3503-0462-6/24/$31.00 ©2024 IEEE

Deep RL has recently been used to achieve super human level
performance on games such as go [1], chess [2], Starcraft [3],
and Diplomacy [4]. Team play aspects have been explored
in games such as DOTA 2 [5]. Beyond examples of games,
deep RL can beat expert human pilots in drone racing [6] and
be used for certain control aspects of nuclear reactors [7]. In
all of these cases the number of training examples used was
immense. Recent theoretical works [8] have demonstrated
that sample efficiency in single-agent reinforcement is low
and is a core challenge.

Model-free approaches are popular in deep RL because
model-based RL has difficulties learning high performing
policies in practice. For example, a-priori models of
agent/environment interaction are either unknown or of low
fidelity. This problem is further complicated in the multi-
agent setting since other agents might also be considered as
part of the environment. These considerations are certainly
present in the multi-agent task of joint sensing and tracking
of objects.

Overall, a major defect of model-free deep RL is sample
inefficiency, meaning that many samples are required for a
desired level of performance. For example, [9] uses “regret”
to quantify sample inefficiency. This problem is amplified in
the context of tracking with a large sensor grid, because the
observation spaces can explode combinatorially.

We propose and demonstrate a reinforcement learning [RL]
technique that learns and exploits decompositions of state and
observation spaces to overcome the sample inefficiency of
existing RL methods. The proposed paradigm of topologi-
cal decomposition transcends the distinction between single-
agent and multi-agent learning and requires very limited
sampling. This technique can be combined with common
deep (model-free) RL algorithms such as proximal policy
optimization [PPO], and Deep Q networks [DQN].

Our demonstration is applied to a simulation of sensor coor-
dination, which can be interpreted as a providing single- or
multi-agent states and observations. Our implementation is
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designed to track a target moving randomly through an array
of sensors. The sensor array is controlled by toggling each
sensor as either on or off. An on-sensor can observe a target
within its field of view, whereas an off-sensor provides no
readings whatsoever. We use the terms on and off as a general
placeholder for activation or tasking the sensor for tracking
the target. The agent receives positive reward whenever an
on-sensor detects the target. There is a cost, however, to
turning a sensor on given by a negative term in the reward
function (Eq. (1)). To improve performance of track custody,
we introduce two new methodologies for training agents,
referred to as decompositions by analogy with topology. The
decompositions restrict the set of actions the agent can take
by enforcing that sensors far from the target remain off. We
develop baselines that demonstrate the difficulty of learning
a high-performing policy for this game by executing state-of-
the-art deep RL algorithms—namely PPO and DQN.

Paper Outline

The rest of this paper is organized as follows. Section 2
describes the novel reinforcement learning (RL) game engine
that we designed to support our experiments. The topological
decomposition paradigm central to defining the new and
flexible proposed RL techniques is outlined in Section 3.
Experimental results are given and evaluated in Section 4,
and the paper concludes in Section 5 with summary and
discussion of needed future work.

2. GAME ENGINE
Our RL game engine comprises of several open source
packages to provide a versatile platform for simulating grid-
based games (Figure 1). We use Griddly, a flexible and
extremely fast open source framework, to define the grid-
world environment [10]. Griddly’s games are specified by an
easy-to-interpret YAML file specifying the rules, objectives,
and layout of the games. This allows for simple manipulation
of game mechanics, including modifications to the number
and geometry of sensors in our simulated sensor array. The
RL agents are trained and their models are specified using
Ray’s RLlib package [11]. RLlib is a state-of-the-art platform
for training single and multi-agent games built on Gymna-
sium [12]. This combination of Griddly and RLlib allows for
an efficient pipeline to design, train, and test RL agents with
topological stratifications for sensor-array type simulations.

The main rationale behind the design choice of our game
engine is speed. Griddly provides extremely fast execution
speeds of up to 70,000 game episodes per second on a single
thread. Rapid game simulations allow for experimentation
with a variety of sensor arrangements and topological decom-
positions. We can also inspect game runs visually throughout
training, as shown in Figure 2.

Figure 1. Game Engine components.

3. TOPOLOGICAL DECOMPOSITIONS
Our approach to topological decomposition is inspired by the
topology of stratified spaces, but it is designed to be agnostic
to the underlying structure of the observation spaces. Our
definitions are designed to allow sensor-control policies with
excellent sample efficiency.

To formalize the approach, consider n < ∞ sensors. For i =
1, . . . , n, the ith sensor has a set Oi of possible observations,
called its observation space. We do not assume that Oi has
any particular structure, and in particular, we do not assume
that all Oi are identical. For example, a given Oi could
include entries such as yes/no, floating-point measurements
12.2 meters, coordinates (x, y) = (3,−7), labels like “cat,” a
waveform, a picture, and so on. Each sensor has a specific
subset Ni ⊂ Oi which represents the null observations.
For example, Ni could be Ni = ∅ for a sensor providing
labels, Ni = {⃗0} for a sensor where Oi is a vector space, or
Ni = {x : ∥x∥ < ε} for a camera subject to thermal noise ε
in an appropriate norm. A detection is a non-null observation
xi ∈ Di, for Di = N c

i .

The total observation space is the set O of tuples x⃗ =
(x1, . . . , xn) for xi ∈ Oi. The null observations are N =
N1 × · · · × Nn ⊂ O, and the detections are D = N c. For
any total observation x⃗, let S0(x⃗) = {i : xi ∈ Di}, the set of
sensors that have a detection (non-null observation) in x⃗. If
x⃗ ∈ N , then S0(x⃗) = {}.

We assume that time is discrete, and all sensors use the
same clock. A total observation at time t is written x⃗(t) =
(x1(t), . . . , xn(t)). Through experiments or simulations or
physical models, we have access to many time-sequences of
observations, . . . , x⃗(t− 1), x⃗(t), x⃗(t+ 1), . . ..

Given an observation x⃗(t) and time-shift τ ∈ Z, let

Sτ (x⃗(t)) = {i : xi(t+ τ) ∈ Di}.

For example, if τ = 0, then S0(x⃗(t)) consists of those sensors
which have detection at time t; if τ = 1, then S1(x⃗(t))
consists of those sensors which will have detection at time
t + 1. Thus, a sensor i ∈ Sτ (x⃗(t)) if and only if there is a
time-sequence of observations x⃗(t) for which the same sensor
i ∈ S0(x⃗(t+ τ)).

The sets Sτ (x⃗) can be hard-coded when the target mechanics
are understood, or Sτ (x⃗) can be learned approximately in a
distributional sense, and those distributions can be taken to
vary over time.

At each time step t, the agent predicts a set of sensors Ŝ(t) ⊂
{1, . . . , n} that are likely to detect something and turns them
“on”. Given a total observation x⃗(t), the reward function is

R(x⃗(t), t) = B ·#
(
Ŝ(t) ∩ S0(x⃗(t))

)
−#Ŝ(t), (1)

where B is the benefit of maintaining track custody. The
reward function is designed so that the agent attempts to
activate sensors to maintain custody, but is penalized for the
total number of activated sensors.

When training with the reward function of Eq. (1), we use
the sets Sτ to enforce policies that force the RL agent to use
resources efficiently. Our Visibility Decomposition policy is
Ŝ(t) ⊂ S0(x⃗(t − 1)). Under the Visibility Decomposition,
the agent is forced to turn off all sensors which cannot
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Figure 2. Game with a 4× 1 sensor arrangement. Sensors are depicted as towers and the target is represented by a drone.
Sensors being activated are shown by the concentric rings emanating from the tower top.

detect the particle at the current time step. Our NextStep
Decomposition policy is Ŝ(t) ⊂ S1(x⃗(t−1)). The NextStep
Decomposition forces the agent to turn off all sensors which
cannot detect the particle at the next time step, given its
current position. The combination of this reward function and
these policies helps to overcome the dimensional limitations
of other RL methods that contribute to sample inefficiency.

4. RESULTS
We compare learning outcomes achieved using off-the-shelf
methods (referred to as “baseline”) and the topological de-
compositions introduced above. The effectiveness of the Vis-
ibility and NextStep decompositions are studied with varying
sensor geometry and number of sensors. The sensors are
equally spaced apart and arranged in a rectangular n × k
layout. If k = 1, we say the arrangement is ‘linear’ and if
k > 1, the arrangement is a ‘grid’.

Results: Baseline methods perform poorly

Our first finding is that baseline methods perform poorly
as the number of sensors in the array increases. The re-
ward curve for PPO for varying number of linearly arranged
sensors is shown in Figure 5. With the exception of the
8 × 1 layout, none of the reward curves show evidence
of learning, despite training for nearly 1,000 iterations or
2,000,000 episodes. At the beginning of training, randomized
play degrades linearly as the number of sensors grows, and
baseline learning methods do not overcome this degradation.
The same analysis applies to baseline methods for grid ar-
rangements, as shown in Figure 6. In all of these training
runs, the agent never averages positive reward per episode.

Results: Decomposition improves reward

We next train with a varying arrangement of sensors as
before, but now enforce a naive version of the Visibility De-
composition introduced above. A naive enforcement means
the decomposition is applied after the agent has selected its
action in each game step. The agent is therefore ‘unaware’
that its proposed action was modified. In Figure 7, we
compare the reward curves for baseline versus the visibility
decomposition for linear sensor arrangements. The visibility
decomposition clearly outperforms the baseline methods, and
maintains positive reward throughout training. The reward
curves for grid layouts are shown in Figure 8 and display
similar traits. Importantly, this improved performance does
not degrade as the number of sensors increases.

The naive enforcement of the visibility decomposition does
improve reward curves but does not lead to learning by the
agent. Learning during training is indicated by increases in
reward as a function of training iteration step. The lack of
learning is evident in the relatively flat nature of the reward
curves of Figures 7 and 8. To make this clear, the naive
enforcement of the visibility decomposition reward curves
have been plotted in Figures 9 and 10. In general, these curves
do not exhibit any upward trend of reward and certainly do
not overcome their intial reward from the first 50 training step
iterations (which is essentially random play given how little
the agent has been trained at this point).

Results: Decomposition through masking enables learning at
scale

We next examined the effect of enforcing decompositions
through action masking. Action masking is a training tech-
nique that exposes the learning agent to the rules of the
decomposition during training, and in theory, allows the
agent to learn the enforced rules on its own. The effect of
masking is highlighted for linear arrangements in Figure 11.
We find dramatic increases in the reward curve as a func-
tion of training iteration, displaying the characteristics of
learning throughout training. The reward curve trends are
also independent of sensor geometry. Thus, the visibility
decomposition with masking enables the agent to learn at
scale, even as the number of sensors increases. This is in
stark contrast to the degradation of reward as a function of
sensor quantity of Figures 5 and 6.

Figures 11 and 12 show that masked (solid lines) learn-
ing algorithms significantly improve reward over naive rule
enforcement (dashed lines). Performance degrades slowly
relative to problem size (i.e. number of sensors).

Results: Reward metrics and improved performance via
masking

In addition to reward, we compute two other key metrics for
each training iteration. The first additional metric is a track
rate, defined as the percentage of training steps for which the
particle is visible to the sensors that are on. The second is
lights on per step, defined as the average number of sensors
on per game step. These two metrics measure the trade-off
between accuracy (high track rate) and efficiency (lights on
per step equal to 1). In a perfect (albeit likely impossible)
scenario, the track rate would be 100% and the lights on per
step would be 1.
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Figure 3. The visibility decomposition forces non-nearby sensors to be off, while the agent controls the nearby sensors.

Figure 4. Allowable sensor actions using NextStep
decomposition for a 4 by 4 sensor arrangement.

Track rate and lights on per step are annotated over the
reward curves of a grid arrangement in Figure 12. We
find as before that masking yields improved performance
versus naive enforcement of the visibility decomposition and
exhibits learning behavior. The introduced metrics also show
the difference between naive and masked enforcement. As
training progresses, the masked decomposition shows steady
increase in track rate and lights on per step, whereas the naive
decomposition shows both quantities decreasing.

Results: NextStep decomposition further improves reward for
complex arrangements

Figures 13 and 14 show that the reward curves for masked
enforcement of the NextStep decomposition. We find the
NextStep decomposition (solid lines) outperforms the Vis-
ibility decomposition as the sensor geometry grows more
complex with more sensors. The NextStep decomposition
with masking allows for substantially more actions than
the Visibility decomposition with masking (dashed lines).
Comparing Visibility with NextStep, we find the optimal
performance of the NextStep decomposition to be greater,
at the cost of it being a potentially harder policy to learn
and therefore slower to learn. Our empirical results indicate
that NextStep outperforms Visibility, especially for sensor
arrangements with more complex geometry (e.g., sensors
overlapping with adjacent corners, edges, etc.).

Figure 5. Baseline with increasing number of sensors,
arranged in a line.

5 x 4 game Episode Re-
ward Mean Track Rate Lights On

Per Step
Baseline
(B=3) -12,500 47% 8.96

Visibility
(B=3) 1,250 34% 0.4

Visibility
Mask
(B=10)

10,750 64% 0.75

NextStep
Mask
(B=10)

11,500 71% 1.11

Table 1. Statistics of our various learning paradigms for a
5× 4 sensor arrangement.

Summary Statistics

Table 1 shows a summary of the different learning approaches
presented for the 5× 4 sensor arrangement for two values of
the benefit B of Eq. (1). We see the baseline performance
of PPO has extremely poor play, evidenced by the negative
episode reward mean. The baseline lights on per step is
also sub-optimal, given that the target can be in view of at
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Figure 6. Baseline with increasing number of sensors,
arranged in a grid.

Figure 7. Visibility Decomposition with increasing number
of sensors, arranged in a line.

most one sensor at any time step. Applying the Visibility
decomposition (naively), we find a significant increase in the
reward but at the cost of poor track custody. Instead, the
Visibility decomposition with masking nearly doubled the
track rate compared to its naive application, and the lights
became much closer to 1. The best paradigm we studied was
the NextStep decomposition, which showed the highest track
rate and a lights on per step nearest to 1.

5. DISCUSSION
Our experiments demonstrate that model-free RL methods
like PPO and DQN degrade dramatically as the size, number,
and arrangement of sensors increase. These scaling concerns
for RL are real and significant obstacles to any attempt
at autonomous multi-sensor resource management and data
fusion. However, topological decompositions based on co-
incident detection in Sτ provides a framework for effective
and efficient learning by reducing the dimension for training
exploration. We found that naively applying decompositions
improves baseline performance and mitigates the degradation

Figure 8. Visibility Decomposition with increasing number
of sensors, arranged in a grid.

Figure 9. Visibility Decomposition with increasing number
of sensors, arranged in a line.

of performance as the size of the problem grows, but it alone
does not enable learning. When we enforced decompositions
through action masking, we saw substantial performance
gains (learning) over the baseline, achieving strong policies
even as the number of sensors grows. By introducing the
NextStep Decomposition, we found even more improvements
in learning, especially in sensor arrays with more complicated
geometry (grid compared to linear). Because of this, we
believe it is possible to use the geometry of the problem to
create additional decompositions which would further im-
prove performance.

Expansion of this work should explore how these policies
might perform in situations of sensor loss due to maintenance,
miscalibration, interference, or adversarial attack. Moreover,
the performance of this framework should be explored in
multi-target tracking with heterogeneous sensor types, as well
as with more dramatic geometric modifications to the sensor
array.
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Figure 10. Visibility Decomposition with increasing
number of sensors, arranged in a grid.

Figure 11. Visibility Decomposition with masking, for
increasing number of sensors arranged in a line.
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