
Convolutional Persistence Transforms

Yitzchak Elchanan Solomon1,3* and Paul Bendich1,2,3

1*Mathematics, Duke University, Durham, NC, USA.
2Geometric Data Analytics, Durham, NC, USA.

3The authors were partially supported by the Air Force Office of Scientific
Research under the grant “Geometry and Topology for Data Analysis and
Fusion”, AFOSR FA9550-18-1-0266. They would also like to extend their

thanks to Alexander Wagner, for helpful conversations..

*Corresponding author(s). E-mail(s):
elchanansolomon@gmail.com;

Contributing authors: paul.bendich@duke.edu;

Abstract

In this paper, we consider topological featurizations of data defined
over simplicial complexes, like images and labeled graphs, obtained by
convolving this data with various filters before computing persistence.
Viewing a convolution filter as a local motif, the persistence diagram
of the resulting convolution describes the way the motif is distributed
across the simplicial complex. This pipeline, which we call convolu-
tional persistence, extends the capacity of topology to observe patterns
in such data. Moreover, we prove that (generically speaking) for any
two labeled complexes one can find some filter for which they produce
different persistence diagrams, so that the collection of all possible con-
volutional persistence diagrams is an injective invariant. This is proven
by showing convolutional persistence to be a special case of another topo-
logical invariant, the Persistent Homology Transform. Other advantages
of convolutional persistence are improved stability, greater flexibility for
data-dependent vectorizations, and reduced computational complexity
for certain data types. Additionally, we have a suite of experiments show-
ing that convolutions greatly improve the predictive power of persistence
on a host of classification tasks, even if one uses random filters and vec-
torizes the resulting diagrams by recording only their total persistences.

Keywords: Persistent Homology, Topological Transform, Machine Learning,
Convolutions

1

2 Convolutional Persistence Transforms

1 Overview

Persistent homology is a method of assigning multiscale topological descrip-
tors to parametric families of shapes. In functional persistence, the object of
study is a real-valued function f : X → R defined over a space X, and the
parametric family of shapes are the sublevel-sets Xα = {x ∈ X : f(x) ≤ α}.
It is similarly possible to consider superlevel-sets, which is equivalent to
negating the filter function f . One crucial feature of this construction is that
Xα is a subset of Xβ for α ≤ β, so that the sublevel-sets are naturally nested.
The output of persistent homology is a collection of intervals (equivalently,
a collection of points), called a barcode (or persistence diagram, using the
point representation). The space of barcodes is not a vector space, even
approximately (Bubenik and Wagner, 2020; Wagner, 2021), but there do exist
multiple vectorizations (Adams et al, 2017; Bubenik et al, 2015; Monod et al,
2019; Di Fabio and Ferri, 2015; Carrière et al, 2015) that transform barcodes
into vectors suitable for machine learning and data analysis.

A very general setting for functional persistence is that of simplicial
complexes, i.e. shapes obtained by gluing together points, edges, triangles,
tetrahedra, etc. For example, if X is a triangulation of a 2D rectangular grid,
a function f : X → [0, 1] can be viewed as a greyscale image. Persistent
homology can then be understood as a feature extraction method for such
images, either for supervised or unsupervised learning. Example applications
include removing image noise (Chung and Day, 2018; Chung et al, 2022),
parameter estimation for PDEs (Calcina and Gameiro, 2021; Adams et al,
2017), segmentation (Hu et al, 2019), flow estimation (Suzuki et al, 2021),
tumor analysis (Crawford et al, 2020), cell immune micronenvironment (Auk-
erman et al, 2020), and materials science (Hiraoka et al, 2016).

It should be understood that purely topological methods do not provide
state-of-the-art predictive accuracy on most machine learning tasks, and are
not to be considered as alternatives to more general methods like neural
nets and kernel methods. Rather, topological methods provide principled and
intepretable features that are different from those extracted by other meth-
ods, and can help improve the performance and utility of the entire pipeline,
especially in settings where data is limited, see (Khramtsova et al, 2022).

To that end, it is important to understand the properties of functional
persistence and their role in machine learning. Here we consider some of the
most salient properties:

• (Computational complexity) For a simplicial complex K with N simplices,
computing persistence is O(Nω), where ω is the matrix multiplication
constant (Milosavljević et al, 2011). This means that such persistence cal-
culations scale poorly in the resolution of data, especially high-dimensional
data, where doubling the resolution in Rd results in a 2d-fold increase in

e

Convolutional Persistence Transforms 3

the number of simplices. Still, in many settings, persistence calculations are
on average much faster than the pessimistic worst-case complexity, see e.g.
(Giunti et al, 2021).

• (Stability) Persistent homology is stable to small perturbations of the input
data, in that the distance between the barcodes for two functions f and g
on a common space X is bounded by ‖f − g‖∞. However, persistence is not
stable to outliers, so images that look similar outside of a small fraction of
pixels can produce wildly different barcodes.

• (Flexibility) There is a single persistence diagram to be associated with
each pair (X, f) of space X and real-valued function f . This lack of addi-
tional parameters makes applying persistence straightforward, but can also
be limiting in contexts where data-dependent featurizations are desired.

• (Invertibility) There exist many distinct space-function pairs (X, f) produc-
ing identical barcodes. Thus, persistence is not invertible as feature map,
and this loss of information may hinder the capacity of persistence-based
methods to identify patterns or distinguish distinct images.

Our goal in this paper is to introduce a modification to persistence of
certain simplicial complexes that is (1) often faster to compute, (2) more
robust to outliers, (3) allows for data-driven tuning, (4) is provably invertible,
and (5) is more informative in practice. Essentially, this technique consists
of passing multiple convolutional filters over the data before computing per-
sistence, and so we call it convolutional persistence. A crucial insight in this
paper is that convolutional persistence can generically be transformed into
a special case of the Persistent Homology Transform (PHT) (Turner et al,
2014) in high-dimensions, implying that it shares the theoretical properties
enjoyed by that invariant.

To get an intuitive sense for why convolutions might be of value in applied
topology, consider Figure 1, which shows how convolution with a simple filter
makes geometric information in an image more available to topological meth-
ods.

1.1 Results

The major theoretical result of the paper is that convolutional persistence is
generically injective (Theorems 8 and 10). We also provide stability results for
convolutional persistence (Propositions 5 and 6). The experimental results of
Section 5 show that convolutional persistence significantly outperforms ordi-
nary persistence at a collection of classification tasks. Interestingly enough,
random filters perform well for the classification tasks considered, even when
only the total persistences of the resulting diagrams are taken as feature
vectors.

4 Convolutional Persistence Transforms

Fig. 1 The original image is shown on the left. The image has interesting topological
structure but the sublevel-set persistence is trivial. On the right, we show the result of
convolving with a 2×2-filter with a value of 1 in each pixel. The sublevel-set persistence of the
convolved image is more informative; at height zero, there are three connected components,
corresponding to three regions in the image where the convolution is zero. These regions
then merge at an immediate value, due to those parts of the image where the local patches
are more similar to the filter.

1.2 Organization

The remainder of the paper is organized as follows. Section 2 provides a
thorough, non-technical survey on persistent homology. Section 3 defines two
versions of convolutional persistence and reviews prior related work. Section
4 contains the main theoretical results of the paper. Section 5 compares ordi-
nary and convolutional persistence on a host of image datasets, showing the
capacity of convolutional persistence to produce features well-suited for image
classification. Finally, Section 6 discusses outstanding questions and potential
generalizations of this work. Code for running experiments with convolutional
persistence can be found at https://github.com/yesolomon/convpers.

2 Background

The content of this paper assumes familiarity with the concepts and tools of
persistent homology. Interested readers can consult the articles of Carlsson
(Carlsson, 2009) and Ghrist (Ghrist, 2008) and the textbooks of Edelsbrunner
and Harer (Edelsbrunner and Harer, 2010) and Oudot (Oudot, 2015). We
include the following primer for readers interested in a high-level, non-technical
summary.

2.1 Persistent Homology

Persistent homology records the way topology evolves in a parametrized
sequence of spaces. In the case of functional persistence, we consider an
ambient space X equipped with a real-valued function f : X → R. The
sublevel-sets Xα = {x ∈ X : f(x) ≤ α} of f are naturally nested, in that Xα is
a subset of Xβ for α ≤ β, and these form a filtration of X. Persistence records
how the topology of this filtration evolves as a function of the parameter α.

https://github.com/yesolomon/convpers

e

Convolutional Persistence Transforms 5

Simplicial complexes admit particularly simple filtrations. To every sim-
plex σ we can associate a real value f(σ) that encodes the parameter value at
which it appears in the filtration of X. The only restriction on the function
f is the following consistency condition: if σ is a sub-simplex of a higher-
dimensional simplex τ (i.e. an edge which sits at the boundary of a triangle),
we must have f(σ) ≤ f(τ), ensuring that simplices do not appear before any
of their faces.

Given a filtered simplicial complex, as the sequence of sublevel-sets evolves,
the addition of certain edges or higher-dimensional simplices alters the topo-
logical type of the space. A precise way of quantifying topology is homology,
which measures the number of connected components (zero-dimensional
homology), cycles (one-dimensional homology), or voids (higher-dimensional
homology) in a space. Thus, homology can change when two connected
components merge or a new cycle is formed. Simplices responsible for such
topological changes are called critical. Persistent homology records the param-
eter values at which critical simplices appear, notes the dimension in which
the homology changes, and pairs critical values by matching the critical value
at which a new homological feature appears to the critical value at which it
disappears. This information is then organized into a structure called a bar-
code, which is simply a collection of intervals. Figure 2 shows the computation
of the zero- and one-dimensional barcodes for a simple simplicial complex.

A barcode can also be encoded as a collection of points, simply by map-
ping each interval [a, b] to the point (a, b) ∈ {(a, b) | a < b, a, b ∈ R∪∞}. This
collection of points is called a persistence diagram, and besides for certain
subtleties, such as dealing with open or closed endpoints and keeping track of
points with multiplicity, it contains the exact same information as the original
barcode. However, for certain analyses and vectorizations of persistence fea-
tures, persistence diagrams are more useful than barcodes, as will be shown
below.

When working with simplicial complexes, it is possible to limit the max-
imal dimension of simplices allowed in the construction. Given an arbitrary
simplicial complex K, we write Km to denote the subcomplex consisting of
all simplices of dimension at most m; this is called the m-skeleton of K. Note
that K and Km have the same homology in dimensions less than m, but may
differ in dimension m, and Km has no homology in dimension greater than m.

2.2 Image Cubical Complexes

A common alternative to simplicial complexes are cubical complexes, i.e.
shapes that are built from vertices, edges, squares, cubes, etc. Such complexes
are more natural when working with data built on top of a grid, such as pixel
or voxel data, see (Kaczynski et al, 2004) for details. A cubical complex can

6 Convolutional Persistence Transforms

0

0

1 1 1

00

1

1

1

1 2 2

1

1

2

2 1

α = 0

α = 1 α = 2

α = 3 H0

0 1 2 1

H1

0 1 2 1

Fig. 2 Top-left: A simplicial complex with filtration values attached to vertices, edges,
and squares. Top-right through bottom-left: sublevel-sets associated with different threshold
values. Bottom-right: barcodes in dimensions zero and one. The zero-dimensional homology
H0 barcode contains four bars, since at α = 0 there are four connected components. Two
bars die at α = 1, since at that threshold value there are only two connected components.
Finally, α = 2 sees the merger of these connected component, so another bar dies at α = 2
and the last persists to infinity. In one-dimensional homology H1, three bars are born at
α = 2, when three loops appear in the sublevel-set, and one of these bars dies at α = 3,
when that loop is killed off by the introduction of a square.

always be converted into a simplicial complex by cutting up cubes into sim-
plicial pieces: a canonical way of doing this is the Freudenthal triangulation.
For a square, for example, this simply amounts to inserting a diagonal edge
that produces two triangles. Given a function on a cubical complex, there is
a canonical way to extend this function to its Freudenthal triangulation with-
out changing its persistence; in the square example, in which the Freudenthal
triangulation incorporates a diagonal edge and two triangles, we simply assign
to these three simplices the filtration value assigned to the original square in
the original cubical complex. Thus, from the perspective of persistence, it does
not fundamentally matter if we work with cubical or simplicial complexes,
although there is a difference vis-a-vis computations.

Given a d-dimensional grayscale image, there are two ways of turning this
data into a cubical complex. One is to view the voxels as being vertices, and

e

Convolutional Persistence Transforms 7

0 1

21:5

0 1

1:5 2
Fig. 3 A 2 × 2 image can be turned into a complex in one of two ways. Left: A complex
with four top-dimensional cubes, with function values, indicated using color, extended to
vertices and edges via the upper-* rule. Right: A complex with four vertices, with function
values extended to the edges and interior square via the lower-* rule.

higher-dimensional cubes as coming from voxels adjacencies, so that pairs of
adjacent pixels form an edge and squares come from four voxels in a square
formation, etc. There is a canonical way of extending the function f from
the voxels (vertices) to the entire complex: given a cube τ , define f(τ) to be
maxσ f(σ), where the max is taken over all vertices σ < τ . Thus, a square
appears precisely once all its constituent vertices appear; this is called the
lower-* filtration.

Alternatively, one can also view the voxels as being d-dimensional cubes,
and have the lower-dimensional cubes be the faces of these voxels. As before,
there is a canonical way of extending the function value from the voxels
(top-dimensional cubes) down to entire complex: for a cube σ, define f(σ) to
be minτ f(τ), where the min is taken over all voxels τ that contain σ. Thus, a
cube appears precisely when at least one of the voxels in which it participates
does; this is called the upper-* filtration.

Consult figure 3 for an illustration of these two images complexes. Gen-
erally, these complexes will differ, and the resulting persistence barcodes will
be different. However, there exists a formula for reading the barcodes for one
construction from the barcodes of the other, see (Bleile et al, 2021).

2.3 Comparing Persistence Diagrams

As multi-sets of points in the plane, persistence diagrams are not vectors.
However, there exist multiple metrics for comparing persistence diagrams. The
most common approach is to view persistence diagrams as discrete distribu-
tions on the plane R2, and use techniques from optimal transport theory, such
as p-Wasserstein metrics Wp, to compare them, see (Oudot, 2017) Chapter
3 and (Villani, 2021). This analogy is complicated by the fact that persis-
tence diagrams do not all have the same number of points, and that points
in a persistence diagram near the diagonal line y = x correspond to tran-
sient homological features, dying shortly after they are born, which ought not

8 Convolutional Persistence Transforms

d1 d2

d3

d4

d5

Fig. 4 Two persistence diagram D1 and D2, one in black and the other in blue. An optimal
matching between these diagrams is shown, containing both diagonal and non-diagonal pair-

ings. The resulting p-Wasserstein distance is then Wp(D1, D2) = p
√
dp1 + dp2 + dp3 + dp4 + dp5.

to play an important role in dictating similarity of diagrams. These problems
are ameliorated by modifying the optimal transport protocol to allow paring
points in one diagram either with points in the other diagram or with the
diagonal line y = x, the latter incurring a cost proportional to the distance of
the given point from the diagonal. This diagonal paring allows us to define an
optimal transport distance between any pair of diagrams, regardless of how
many points they have. In practice, the p-Wasserstein metrics in use are either
p = 1, p = 2, or p = ∞, the latter of which is called the Bottleneck distance
in persistence theory, and is written dB . See Figure 4 for a visualization of a
matching between persistence diagrams.

2.4 Computational Complexity

Persistence calculations are O(Nω), where N is the number of simplices in
the filtration and ω is the matrix multiplication constant (Milosavljević et al,
2011). Though this bound is in practice quite pessimistic, it is accurate in
reflecting the poor scaling of persistence calculations in the resolution of an
image (Otter et al, 2017).

The bottleneck distance between persistence diagrams can be computed
exactly using the well-known Hungarian algorithm, whose complexity is O(n3)
for pairs of diagrams with at most n points. The number of points in the
persistence diagram of filtration is always bounded by the total number N
of simplices in the filtration, and may be much smaller. If one is interested
in approximating the bottleneck, or more generally, p-Wasserstein distances
between persistence diagrams, there are significantly faster methods than the
Hungarian algorithm. One such method is based on entropic approximation
techniques from optimal transport (Lacombe et al, 2018), and provided that
the norms of the points in the diagrams are uniformly bounded by some con-
stant C, a transport plan within ε of the optimal matching can be produced

e

Convolutional Persistence Transforms 9

in O(n log(n)C
ε2) iterations of the Sinkhorn algorithm, which is itself linear in

n. Moreover, recent work in optimal transport theory provide an improved
asymptotic convergence rates for Sinkhorn’s algorithm of Õ(n2/ε), where Õ
indicates that logarithmic factors have been hidden, see (Pham et al, 2020).

2.5 Properties of Persistent Homology

Persistence theory guarantees that a small modification to the filtration of a
space produces only small changes in its persistence diagram.

Theorem 1 ((Cohen-Steiner et al, 2007)1) Let f, g : X → R be two filtrations on a
simplicial complex. Then the Bottleneck distance between their persistence diagrams
is bounded by ‖f − g‖∞.

Corollary 1 Let f, g : K0 → R be two functions on the vertex set of a simplicial
complex, with lower-* extensions f̂ and ĝ, respectively. Then ‖f̂ − ĝ‖∞ ≤ ‖f − g‖∞,
so that the Bottleneck distance between the persistence diagrams of f̂ and ĝ is bounded
by ‖f − g‖∞.

Proof Consider a simplex σ ∈ K. By definition, f̂(σ) = maxv∈σ0 f(v) and ĝ(σ) =
maxv∈σ0 g(v). Let vf and vg be the vertices of σ realizing these maxima for f and
g, respectively. Then f(vf) ≤ g(vf) + ‖f − g‖∞ ≤ g(vg) + ‖f − g‖∞, so that f(σ) ≤
g(σ) + ‖f − g‖∞. A symmetric argument shows that g(σ) ≤ f(σ) + ‖f − g‖∞, so
that |f(σ)− g(σ)| ≤ ‖f − g‖∞. �

This implies that a small error in the filter function produces only small
distortion in the resulting persistence diagram. However, persistent homology
is not at all stable to outliers, i.e. a small subset of the data having large error
(Buchet et al, 2014).

More recent work (Skraba and Turner, 2020) has established analogous
stability results for Wp metrics between persistence diagrams, although we cau-
tion readers that this paper has yet be to published. The latter of the following
two results is particularly useful for the subject matter of this paper.

Definition 1 ((Skraba and Turner, 2020), Definition 4.1) The Lp norm of a function
on a simplicial complex f : K → R is:

‖f‖pp =
∑
σ∈K

|f(σ)|p.

1The main theorem of (Cohen-Steiner et al, 2007) is much more general, applying to tame
functions on triangulable spaces, conditions which are automatically satisfied in the simplicial
setting.

10 Convolutional Persistence Transforms

Fig. 5 Two functions on the same grid with the same persistence, using either sublevel-
or superlevel-set filtrations. Color scheme: {black: 0, grey: 0.5, white: 1}. All persistence
diagrams consist of the single point (0, 1) in dimension 0.

Theorem 2 ((Skraba and Turner, 2020), Theorem 4.8) Let f, g : K → R be two
monotone functions on a fixed simplicial complex. Then for all p ≥ 1,

Wp(Diag(f),Diag(g)) ≤ ‖f − g‖p.

Theorem 3 ((Skraba and Turner, 2020), Theorem 5.1) Let f, g : P → R be the
grayscale functions for two images defined over the same grid of pixels P . Let f̂ and
ĝ be the corresponding extensions to the d-dimensional cubical complex built on top
of P , by either method described in Section 2.2. Then we have the stability result:

Wp(Diag(f̂),Diag(ĝ)) ≤

(
d∑
i=1

2d−i
(
d

i

))
‖f − g‖p = (3d − 2d)‖f − g‖p.

Another important feature of persistent homology is that the pipeline
mapping a function f on a simplicial complex K, thought of as a vector in
RK , to its associated persistence diagram is almost everywhere differentiable
(Gameiro et al, 2016; Poulenard et al, 2018). This is because the coordinates
of the points in the diagram correspond to the values of f on critical sim-
plices, and this correspondence is generically locally stable. However, large
perturbations of f will change the location of critical simplices, as well as
their pairings (Bendich et al, 2020), and non-differentiable nonlinearities can
be found in those degenerate cases when the critical simplex data is not
unique and locally unstable. This almost everywhere differentiability of per-
sistent homology allows us to use gradient descent methods for topological
optimization (Carriere et al, 2021). Applications of topological optimization
to machine learning models, and especially to deep learning, were considered
in (Gabrielsson et al, 2020).

It is also important to note that persistent homology is not an injective
invariant, meaning that different functions on the same space, or on differ-
ent spaces, can have the same persistence diagrams (Curry, 2018; Leygonie
and Tillmann, 2022; Leygonie and Henselman-Petrusek, 2021), see Figure 5.
Thus, some information is lost in the process of converting a pair (X, f) to a
persistence diagram.

We conclude the background section with an important lemma about the
persistence of simplicial complexes embedded in Euclidean spaces. This lemma

e

Convolutional Persistence Transforms 11

equates the persistence of two filtrations on such complexes, both extended
from a function on the vertex set, one discretely (via the lower-* filtration)
and the other continuously (via linear interpolation).

Definition 2 Let K be a simplicial complex, and f : K0 → R a function on the
vertices of K. We write f̂ to denote the lower-* extension of f to all of K, defined
by f̂(σ) = maxv∈σ0 f(v) for σ a simplex with vertex set σ0.

Proposition 4 Let K be an embedded simplicial complex in Rd with vertex set K0.
For a function f : K0 → R with lower-* extension f̂ , we can also extend f to all of K
via linear interpolation, producing a function f∗ : K → R. Then these two extensions
produce identical persistence diagrams, i.e. Diag(K, f∗) = Diag(K, f̂).

Proof This follows from Lemma 2.3 of (Bestvina and Brady, 1997) and Section VI.3
of (Edelsbrunner and Harer, 2010). �

3 Convolutional Persistence

We now introduce two modifications to functional persistence of complexes,
one based on techniques in image processing and applying to cubical com-
plexes, and another based on graph convolutions and applying to either cubical
or simplicial complexes (although, without loss of generality, we focus on the
latter – see Section 2.2 for how a cubical complex can be converted into a sim-
plicial complex). We call the former Image Convolutional Persistence and the
latter Simplicial Convolutional Persistence.

3.1 Image Convolutional Persistence

Let P ⊂ Zd be a rectangle inside of the integer lattice, and let f : P → R be a
function defined on P . P can be viewed as the vertex set of an m-dimensional
cubical complex Km

P , and f can be extended to this complex via the lower-*
rule, in which f(σ) = maxp∈σ f(p), as in Section 2.2.

Definition 3 Let B ⊂ Zd be another rectangle, and let g : B → R be a function
on this rectangle; the pair (B, g) acts as a convolutional filter. Fix a vector k =
(k1, · · · , kd) with ki ∈ N>0, corresponding to the stride of the convolution. For
v ∈ Zd with B + (v � k) ⊆ P ,2 define:

(f ∗ g)(v) =
∑
p∈B

g(p)f(p+ v � k).

Let R ⊂ Zd be the collection of values r such that B+(r�k) ⊆ P , which is necessarily
also a rectangle. The pair (R, f ∗ g) is the output of our convolution. See Figure 6.

2The symbol � refers to the Hadamard product, which performs componentwise multiplication
between vectors.

12 Convolutional Persistence Transforms

We will generally assume that R is not empty, meaning that some translate of B is
a subset of P .

Remark 1 If B consists of a single element b, and g(b) = 1, then, up to translation,
P = R and f = f ∗ g.

Remark 2 Translating P or B has no substantial impact on the above construction,
resulting only in a translation of the corresponding region R. Since all of the invari-
ants we study here are invariant to translation of the domain, it would be possible
to work entirely in the quotient space of grid functions f : P → R defined up to
translation. Equivalently, we might work with rectangles P whose lattice-minimal
element (i.e. bottom-left corner) is the zero vector. Ultimately, we have chosen to
eschew these additional formalisms in the interest of keeping our definitions as con-
crete as possible, but encourage the reader to adopt whichever perspective they find
most insightful.

Definition 4 As a generalization of the above definition, we can allow n-channel
images f : P → Rn and filters g : B → Rn, and replace the product in the formula
above with a dot product:

(f ∗ g)(v) =
∑
p∈B

g(p) · f(p+ v � k).

Thus, the result of the convolution is real-valued (not vector valued), and ordinary
persistent homology can be computed. In principle, it is possible to have the image
and filter dimensions differ, and to compute the persistent of multi-channel images
via multiparameter persistence, see (Botnan and Lesnick, 2022), but this is beyond
the scope of this work and presents its own set of theoretical and computational
challenges.

R may be much smaller than the support of f , since the various translates
of B covering this support are not required to overlap much, if at all. In the
degenerate setting where P and B are the same shape, R will consist of a single
vertex. For the purposes of computing persistence, we will think of R, like P ,
as being the vertex set of a cubical complex Km

R , and we extend functions on
R to the entirety of the cubical complex using the lower-* rule.

Notation 1 For a function f defined on the vertex set of a complex K, we write f̂ to
denote its lower-* extension to all of K.

We propose that the collection of persistence diagrams of the form

PH(Km
R , f̂ ∗ gi), for some set of filter functions G = {gi}, is of greater general

utility than PH(Km
P , f̂). The computational advantages are immediate: when

the stride k is large, so that R is much smaller than P , we have replaced a sin-
gle, very expensive calculation with multiple, significantly faster calculations
that can be performed in parallel. Moreover, we claim that this approach,

e

Convolutional Persistence Transforms 13

P B

f1;1 f1;2 f1;3

f3;1 f3;2 f3;3

f4;1 f4;2 f4;3

f g

g1;1 g1;2

g2;1 g2;2

f1;1 f1;2

f2;1 f2;2

f1;2 f1;3

f2;2 f2;3

f3;1 f3;2

f4;1 f4;2

f3;2 f3;3

f4;2 f4;3

g1;1 g1;2

g2;1 g2;2

g1;1 g1;2

g2;1 g2;2

g1;1 g1;2

g2;1 g2;2

g1;1 g1;2

g2;1 g2;2

f1;1g1;1 + f1;2g1;2 + f2;1g2;1 + f2;2g2;2 f1;2g1;1 + f1;3g1;2 + f2;2g2;1 + f2;3g2;2

f3;1g1;1 + f3;2g1;2 + f4;1g2;1 + f4;2g2;2 f3;2g1;1 + f3;3g1;2 + f4;2g2;1 + f4;3g2;2

R f ∗ g

f2;1 f2;2 f2;3

Fig. 6 f is a function on a 4×3 grid P , with function values indicated by subscripts. g is a
filter function on a 2× 2 grid B. Using a stride vector k = (1, 2) means that the rectangle B
is translated horizontally one unit but vertically two units; there are four possible translates
of B that sit inside P , corresponding to the 2 × 2 grid R. Each vertex of R corresponds to
a translate of B, and the value of f ∗ g at that vertex is obtained by lining up the values of
g and f on that translate, multiplying them element-wise, and then summing them.

which we deem convolutional persistence has superior inverse properties.
Proofs of stability and injectivity can be found in the following Section 4.

The flexibility of convolutional persistence comes from allowing the collec-
tion of filters G to be curated for the task at hand. Indeed, there are many
ways for this choice to be made:

1. Take G to consist of a collection of popular filters in image processing, like
blurring, sharpening, and boundary detection.

2. Take G to consist of eigenfilters identified via PCA on the set of patches of
images in the training set.

3. Picking filters at random.
4. Incorporate convolutional persistence in a deep learning pipeline and learn
G to minimize a chosen loss function.

In Section 5, we compare some of these different choices on a range of data
sets and learning tasks. We also demonstrate the stability of computational
persistence experimentally.

14 Convolutional Persistence Transforms

We conclude this section with a simple complexity analysis. Given a d-
dimensional grid P with p pixels of resolution in each direction, the total
number of voxels |P | is equal to pd. Each voxel participates in a uniformly
bounded number of higher-dimensional simplices, so the total number of sim-
plices in the resultant complex is O(pd). Note that this is different from
simplicial complexes built on top of point clouds, in which each point is allowed
to create simplices with every other point; these non-local connections cause
a further combinatorial explosion in the number of simplices. Thus, for func-
tional persistence on grids, the total complexity of computing the persistence
of a function on such a complex is O(pdω), where ω is the matrix multiplication
constant. When moving to convolutional persistence, the resolution shrinks
when the stride is bigger than one. For a stride vector k = (2, · · · , 2), the total

number of voxels in the resulting grid R is O(
(
p
2

)d
), and hence the persistence

calculations are O(
(
p
2

)dω
), so that the complexity bound has decreased by a

factor of 2dω. More generally, setting κ = Πiki, computing convolutional per-

sistence for M filters has complexity O(M
(
|P |
κ

)ω
). Additionally, increasing

the size of B decreases the size of R, as fewer translates of B sit inside P ; to
be precise, increasing the length of B in a given coordinate shrinks the result-
ing region R by an identical amount in the same coordinate. Altogether, this
means that, even computing convolutional persistence for a large class of fil-
ters, the speed-ups afforded by downsampling are significant, especially when
using large stride vectors. This was verified experimentally in (Solomon et al,
2021b), in the context of optimization of topological functionals.

3.2 Simplicial Convolutional Persistence

Let K be a connected simplicial complex, and f : K0 → Rd a function on the
vertices of K, which can be extended via the lower-* filtration to a function f̂
on all of K. If |K0| = n, we can encode the function f by a n × d matrix X
by imposing an order on the vertices of K and setting the ith row of X to be
the value of f on the ith vertex. We can also encode the 1-skeleton K1 of the
complex as a graph with adjacency matrix A. Following (Kipf and Welling,
2016), for a weight matrix W of shape d × k, we can transform the data X
via the map X → AXW , which amounts to transforming the data X by first
multiplying by W , and then defining the value at a vertex to be the average of
the values at its neighbors (adding a self-loop lets us include the vertex itself
in this set). When W = w has shape d × 1, AXW encodes a map from K0

to R. We now define simplicial convolutional persistence by generalizing this
construction and incorporating persistent homology.

Definition 5 Let K be a simplicial complex and f : K0 → Rd a function on the
vertices of K, encoded by an n× d matrix X. Let A be an arbitrary, but fixed, n×n
matrix, not necessarily the adjacency matrix of K1, and W = w a d × 1 weight
matrix. We define the simplicial convolutional persistence of (K,A, f) on w to be

e

Convolutional Persistence Transforms 15

PH(K, f̂ ∗ w), where f ∗ w is the function on K0 associated to AXw, and f̂ ∗ w is
its lower-* extension to all of K.

We take A to be an arbitrary matrix to allow for graph structures with self-
loops, weights, and asymmetric distances. It might seem from the definition
above that there is no need to separate the data matrix X from the generalized
adjacency matrix A, and so we might consider only the product AX, as this
is what appears in all calculations. However, distinguishing X from A has
conceptual value, as X encodes the data defined on the simplicial complex,
and A defines the complex itself. Thus, for example, noise in our measurements
ends up in matrix X rather than the matrix A, and this is important for
understanding the stability of convolutional persistence.

Remark 3 As simplicial convolutional persistence does not shrink the domain of
the function, it does not exhibit the computational speedups of image convolutional
persistence.

3.3 Prior Work

Convolutional persistence is a type of topological transform, in which a
parametrized family of topological invariants is associated to a fixed input.
The first topological invariants studied were the persistent homology trans-
form (PHT) and Euler characteristic transform (ECT) (Turner et al, 2014).
In the same paper in which the PHT and ECT were defined, inverse theorems
were proven; these theorems were generalized and extended by later work
(Curry et al, 2018; Ghrist et al, 2018). We will later show that convolutional
persistence is, generically, a special case of the PHT, allowing us to take
advantage of the inverse theory developed for that invariant. Invertible topo-
logical transforms have also been developed for weighted simplicial complexes
(Jiang et al, 2020), metric graphs (Oudot and Solomon, 2017), metric spaces
(Solomon et al, 2022), and metric measure spaces (Maria et al, 2019). Consult
(Oudot and Solomon, 2020) for a more thorough survey of inverse problem in
applied topology.

Prior research has also studied the interaction of persistent homology and
image convolutions. In (Solomon et al, 2021b), the authors use convolutions
to stabilize and speed up topological optimization; the approach taken there
can be viewed as a special case of convolutional persistence, in which the filter
set G consists of many random approximations of the box-smoothing filter.
Unlike in this work, the goal of (Solomon et al, 2021b) is to produce many
downsampled images with persistence similar to the original, permitting the
computation of robust topological gradients. Another paper that considers
both persistence and convolutions is (Kim et al, 2020), where the authors
develop a topological layer for deep learning models; one such model they con-
sider is a convolutional neural network, and the authors design the network to

16 Convolutional Persistence Transforms

compute topological features both before and after computing convolutions.
However, (Kim et al, 2020) do not study the interaction of convolutions and
persistence in any generality.

4 Theoretical Results

In what follows, we prove two versions of each result, one for each flavor of
convolutional persistence.

4.1 Stability

Remark 4 We remind readers that Theorem 3 (Skraba and Turner, 2020) is an unpub-
lished result, and that this Theorem is needed to establish the p 6= ∞ cases of the
following two propositions.

We begin with image convolutional persistence. Fix an input domain P ,
filter region B and stride vector k, and a skeleton dimension m. Focusing on
single-channel images, this determines the domain R for any convolutions of
f : P → R and g : B → R.

Proposition 5 Let f1, f2 : P → R be two functions on P , and g : B → R a filter
function. Then, computing persistence over the complex Km

R , for any p ≥ 1 we have:

Wp(Diag(f̂1 ∗ g),Diag(f̂2 ∗ g)) ≤
(3m − 2m)‖g‖1‖f1 − f2‖p ≤

|B|(3m − 2m)‖g‖∞‖f1 − f2‖p.

When p =∞, the bound can be made tighter:

W∞(Diag(f̂1 ∗ g),Diag(f̂2 ∗ g)) ≤
‖g‖1‖f1 − f2‖∞ ≤

|B|‖g‖∞‖f1 − f2‖∞.

Proof Young’s convolutional inequality3 states that for 1 ≤ p, q, r ≤ ∞ with 1
p + 1

q =
1
r + 1,

‖f ∗ g‖r ≤ ‖g‖q‖f‖p.
Setting r = p forces q = 1, and setting f = f1 − f2, we obtain the bound ‖f1 ∗ g −
f2 ∗ g‖p ≤ ‖g‖1‖f1 − f2‖p. Since g is supported on a set of |B| elements, we have
‖g‖1 ≤ |B|‖g‖∞, so that ‖f1 ∗ g − f2 ∗ g‖p ≤ |B|‖g‖∞‖f1 − f2‖p. The bound then
follows from Theorem 3 in general, and from Corollary 1 when p =∞. �

We now consider simplicial convolutional persistence.

3See (Hewitt and Ross, 2012), Theorem 20.18 on page 296, for a proof of Young’s inequality for

locally compact groups, which in particular includes Zd.

e

Convolutional Persistence Transforms 17

Definition 6 Let X be an n × k matrix. For 1 ≤ p ≤ ∞, we define the p-operator
norm of X as follows:

‖A‖∗p = sup
x 6=0

‖Ax‖p
‖x‖p

.

It is a standard result that operator norms are submultiplicative, meaning that
‖X1X2‖∗p ≤ ‖X1‖∗p‖X2‖∗p, where X1 and X2 are any two matrices that can be
multiplied.

Proposition 6 Let K be a simplicial complex and f1, f2 : K0 → Rd two functions
on its vertex set, encoded by matrices X1 and X2. Write n = |K0|, and take A to
be the n× n matrix used in convolutional persistence. Take a weight vector w ∈ Rd.
Then, computing persistence over the complex Km, for any p ≥ 1 we have:

Wp(Diag(f̂1 ∗ w),Diag(f̂2 ∗ w)) ≤
(3m − 2m)‖A‖∗p‖X1 −X2‖∗p‖w‖p.

When p =∞, the bound can be made tighter:

W∞(Diag(f̂1 ∗ w),Diag(f̂2 ∗ w)) ≤
‖A‖∗∞‖X1 −X2‖∗∞‖w‖∞.

Proof The difference f1∗w−f2∗w can be written as A(X1−X2)w. Submultiplicativ-
ity of the p-operator norm shows that ‖A(X1 −X2)w‖∗p ≤ ‖A‖∗p‖(X1 −X2)‖∗p‖w‖∗p.
For column vectors v, it is easy to see that ‖v‖∗p = ‖v‖p, i.e. the p-operator norm is
equal to the usual p-norm. Thus we can write

‖f1 ∗ w − f2 ∗ w‖p = ‖A(X1 −X2)w‖p ≤ ‖A‖∗p‖(X1 −X2)‖∗p‖w‖p.
As before, the bound then follows from Theorem 3 in general, and from Corollary 1
when p =∞. �

As all matrix norms are equivalent, the quantity ‖X1 − X2‖∗p is bounded
above and below by a constant multiple of ‖X1−X2‖p, the matrix p-Frobenius
norm, providing for stability in this norm too.

4.2 Inverse Theory

We begin this section by recalling the definition of the persistent homology
transform and some of its injectivity properties. We then prove that the per-
sistent homology transform can be extended to functions defined on abstract
simplicial complexes, and that the resulting transform also has strong inverse
properties. Finally, we use this new theorem to prove inverse results for our
two convolutional persistence transforms.

Definition 7 ((Turner et al, 2014)) Let M ⊂ Rd be a finite simplicial complex. For
every vector v ∈ Sd−1, we can define the function fv(x) = 〈x, v〉. The persistent
homology transform PHT (M) is then defined as the map from Sd−1 to the space
of persistence diagrams that send a vector v to the persistence diagram of (S, fv).
One can define a similar invariant using Euler curves instead of persistence diagrams,
called the Euler characteristic transform (ECT).

18 Convolutional Persistence Transforms

The PHT was shown to be injective for d = 2, 3 in (Turner et al, 2014).
Later work (Ghrist et al, 2018; Curry et al, 2018) proved injectivity in all
dimensions, for both the PHT and ECT, for a very general class of subsets
that includes simplicial complexes.

Theorem 7 ((Turner et al, 2014; Ghrist et al, 2018; Curry et al, 2018)) Let K,L ⊂
Rd be two embedded simplicial complexes. If PHT (K) = PHT (L) or ECT (K) =
ECT (L) then K = L.

Now, given a complex (simplicial or cubical) K with a function f : K0 →
Rd, we can define an analogous topological transform.

Definition 8 Let K be a complex (simplicial or cubical) with a function f : K0 →
Rd defined on its vertices, extending to a function f̂ on K via the lower-* filtration.
For v ∈ Sd−1, we can define the function f̂ · v : K → R. We then define the PHT
of (K, f) to be the map on Sd−1 that sends a vector v ∈ Sd−1 to the persistence

diagram of (K, f̂ · v). We define the ECT similarly.

We now prove an injectivity result for the PHT and ECT of such complex-
function pairs (K, f). This result shows that the PHT and ECT are injective
up to a simple equivalence relation which we now define.

Definition 9 For a complex K with a function f : K0 → Rd, we write f4 to denote
the function f4 : geom(K)→ Rd defined on the geometric realization of K via linear

interpolation. This differs from f̂ , which is defined via the discrete lower-* rule. Note
that we use the notation geom(K) as opposed to the more traditional |K| to avoid
confusion with the cardinality of K as a set.

Definition 10 Let (K, f) and (L, g) be two complexes with Rd-valued functions
defined on their vertex sets. We will say that (K, f) and (L, g) are re-discretization
equivalent if there is a homeomorphism h : geom(K)→ geom(L) with f4 = g4 ◦ h.
In other words, (K, f) and (L, g) induce the same geometric object and locally linear
map.

Theorem 8 Suppose that (K, f) and (L, g) are two complexes with Rd-valued func-
tions defined on their vertex sets, and suppose further that f4 and g4 are injective
embeddings of geom(K) and geom(L) into Rd. Then PHT (K, f) = PHT (L, g) or
ECT (K, f) = ECT (L, g) implies that f4(geom(K)) = g4(geom(L)), i.e. (K, f)
and (L, g) are re-discretization equivalent, with h = g4 ◦ (f4)−1.

Proof For a weight vector w ∈ Sd−1, the functions f̂ · w and f4 are identical on
the vertex set K0, but differ in their extensions to K or geom(K), as the former

e

Convolutional Persistence Transforms 19

is discrete and the latter continuous. However, Proposition 4 shows that they give
the same persistence diagrams (and hence, also, Euler characteristic curves). It is,
moreover, easy to see that the filtration on geom(K) given by f4 · w is identical to
the filtration on f4(geom(K)) given by fw(x) = x · w, identifying geom(K) with
f4(geom(K)) by dint of the fact that f4 is a homeomorphism. Thus, the PHT of
(K, f) contains the same data as the PHT of f4(geom(K)) (and the same is true
for the ECT), and so we can apply Theorem 7. �

In order to use this theorem to prove inverse results for convolutional
persistence, we need one more technical lemma.

Definition 11 A collection of points S in Rd are in general position if no hyperplane
intersects S in more than d points.

Remark 5 It is easy to see that the property of being in general position is invariant
under translation. Moreover, if a set S in general position in Rd contains the origin
as a point s0 = ~0 ∈ S, then any set of d vectors in S \ s0 is linearly independent.

Remark 6 Being in general position is a generic property of point sets, meaning that
the subset of (Rd)S corresponding to subsets in general position is open and dense.

Lemma 1 Let S be the vertex set of an m-dimensional simplicial complex Km. Let
ι : S ↪→ RM be an embedding with ι(S) in general position. Then if M ≥ 2m + 1,
the embedding extends by interpolation to an injective embedding ι4 : Km ↪→ RM .
Similarly, let S is vertex set of an m-dimensional cubical complex Lm and ι : S ↪→
RM an embedding with ι(S) in general position. Then if M ≥ 2m+1−1, the embedding
extends by interpolation to an injective embedding ι4 : Lm ↪→ RM .

Proof We begin with the simplicial complex. A nontrivial intersection of two faces
ι(σ1) and ι(σ2) for σ1, σ2 ≤ Km implies that the union of their vertex sets ι(σ0

1 ∪σ0
2)

is not linearly dependent (this includes the case when the two faces are identical,
i.e. a self-intersection), and in fact this dependence relation has at least two nonzero
terms, as a dependence relation with only one nonzero term corresponds to a vertex
sitting at the origin, which does not reflect any intersection of faces. Translating
one of the vertices in ι(σ0

1 ∪ σ0
2) to the origin and dropping it from the dependence

relation, we are still left with a nontrivial dependence relationship among the
remaining vertices. Now, a face of Km has at most m + 1 vertices, so the union of
two faces involves at most 2m+ 2 vertices. If M ≥ 2m+ 1, translating one of these
vertices to the origin means that the remaining vertices are linearly independent,
which contradicts the possibility of such a dependence relation.

The proof is similar with the cubical complex. A face of Lm contains at most 2m

vertices, so the union of two faces contains at most 2m+1 vertices. If M ≥ 2m+1− 1,
translating one of these 2m+1 points to the origin makes the remaining 2m+1 − 1
linearly independent, an hence no intersection can occur. �

We now prove our inverse results for convolutional persistence.

20 Convolutional Persistence Transforms

Simplicial Convolutional Persistence

Recall that for a function f : K0 → Rd defined on the vertex set of simplicial
complex and encoded by an |K0| × d matrix X, an arbitrary fixed |K0| × |K0|
matrix A, and a d×1 weight vector w, the simplicial convolutional persistence
of the triple (K,A, f) on w is defined by first writing f ∗ w for the function
on K0 defined by AXw and then computing the persistent homology of the

lower-star extension f̂ ∗ w on K. We now define a topological transform based
on this convolution.

Definition 12 Fix f : K0 → Rd and A as in the definition of simplicial convolu-
tional persistence. Define the convolutional persistence transform to be the mapping
CPT (K, f,A) : Sd−1 → Diagrams that sends a weight vector w ∈ Sd−1 to the

persistence diagram PH(K, f̂ ∗ w). One can similarly define an Euler characteristic
curve version of this invariant, the Convolutional Euler Characteristic Transform
(CECT), by computing Euler characteristic curves instead of persistence diagrams.

Definition 13 We will say that a property is generically true if it is true when
restricted to some open, dense set of parameters. For example, with simplicial con-
volutional persistence, the parameters are the function f , encoded by the matrix X,
and the generalized adjacency matrix A.

Proposition 9 Assume that d ≥ dim(K) + 1. Then f4 is generically an injective
embedding of geom(K), and so the CPT and CECT of (K, f,A) determine (K, f)
up to re-discetization.

Proof It is a generic property of the matrix AX that its rows are in general position
in Rd. Lemma 1 then implies that f4 is injective on the geometric realization. We
can then apply Theorem 8. �

Image Convolutional Persistence

We begin by defining our topological transform.

Definition 14 Fix f : P → R. The Convolutional Persistence Transform is the
mapping CPT (f) : S|B|−1 → Diagrams that sends an L2-normalized function
g : B → R to the persistence diagram of f∗g onKm

R . One can similarly define an Euler
characteristic curve version of this invariant, the Convolutional Euler Characteristic
Transform (CECT), by computing Euler characteristic curves instead of persistence
diagrams. Using multi-channel images f : P → Rn, we can define an analogous CPT
and CECT. In this setting, g ranges over all normalized functions B → Rn, which
can be identified with S|B|n−1.

e

Convolutional Persistence Transforms 21

R
9

ιf

B R

g

~g

Fig. 7 The function f is defined on the 4 × 4 grid on the top left. The box B is 3 × 3,
and using a (1, 1)-stride there are four ways of laying B over the domain of f , so that R is
a 2 × 2 grid. We can map the vertices of R into R9 by associating each vertex of R with
its corresponding translate of B, and then taking as coordinates the values of f in that
translate. This extends via interpolation to a map ιf from the complex K2

R into R9, which
here is shown to be an embedding.

Remark 7 Taking a trivial convolution where B consists of a single vertex b and
g(b) = 1, we can recover the original persistence diagram of f . Thus, the CPT is a
strictly more general construction than ordinary persistence.

Next, we show how to associate (P, f) with a Euclidean embedding of KR.

Definition 15 For a fixed function f : P → Rn, we obtain a mapping ιf of the

rectangle R into R|B|n by sending every point r ∈ R to the vector {f(b+ k� r) | b ∈
B}. In other words, r corresponds to a translate of B, and ιf (r) records the values
of f restricted to this translate. This is technically a set, rather than a vector, but
it becomes a vector after fixing an order on the elements of B. Such a mapping can
be extended via the lower-* rule to a map ι̂f : KR → R|B|n on the entire cubical
complex KR built on top of R. See Figure 7.

It is easily seen that, fixing the rectangles P and B and the stride vec-
tor k, that (KR, ι̂f) uniquely determines f , and moreover that CPT (f) =
PHT (KR, ι̂f). To obtain an inverse result in this context, we must show that

the continuous interpolation ι4f is generically injective on geom(Km
R). See

Figure 8.

22 Convolutional Persistence Transforms

P B

R

1 2 3 −1

3 2 1 −1

(1; 2)

(3;−1)

(3; 2)

(1;−1)

ι
4

f

Fig. 8 The grid P has shape 2 × 4, whereas B has shape 1 × 2. Using a convolutional of
stride (2, 1), there convolutional grid R has shape 2 × 2. The values of the function f are
indicated in the grid P . This induces a mapping ιf from the vertices of R into R2, where
the top-left vertex of R gets sent to (1, 2), the top-right to (3,−1), the bottom-left to (3, 2)
and the bottom-right to (1,−1). Extending this via interpolation to the complex K2

R results

in some self-intersections, so that ι4f is not a homeomorphism on to its image.

Lemma 2 Let κ = Πiki, where ki is the ith entry of the stride vector k, and suppose

that nκ ≥ 2m+1 − 1. Then a generic function f has the property that ι4f is injective

on the m-skeleton Km
R , so that ι4f (geom(Km

R)) has the structure of a cubical complex

isomorphic to Km
R .

Proof Let B∗ ⊆ B consist of those elements in the top-left k1 × k2 × · · · kd corner
of B. The various translates B∗ + (k � r) are all disjoint subsets of P . To show

that ι4f is injective, it suffices to show that it is injective when composed with the

coordinate projection π : R|B|n → R|B
∗|n. However, since the translates of B∗ are

disjoint, a choice of π ◦ ιf is equivalent to choosing an arbitrary vector in R|B
∗|n for

each pixel in R (a collection which will generically be in general position), and the

map π ◦ ι4f = (π ◦ ιf)4 is obtained by linearly interpolating this mapping on the

interior of the higher-order simplices of Km
R . By Lemma 1, if |B∗|n ≥ 2m+1 − 1, we

know that π ◦ ι4f is injective, and hence ι4f is injective. �

Theorem 10 Fix P,B, k, and assume that κ = Πiki ≥ 2m+1−1. Then, generically,
CPT (f) = CPT (g) implies f = g, and the same is true for the CECT.

e

Convolutional Persistence Transforms 23

Proof Lemma 2 and Theorem 8 imply that CPT (f) or CECT (f) determines

ι4f (geom(Km
R)), which uniquely determines f . �

Remark 8 What we have just shown is that having a large stride vector, in addition
to providing computational speedups by lowering the resolution of the resultant grid,
also provides generic injectivity for persistence of higher-dimensional data complexes.

The following corollary shows that to apply Theorem 10 one can ignore
those filter functions orthogonal to image patches in our dataset. As (Carlsson
et al, 2008) observed, the space of local patches in natural images has very
high codimension in the space of all possible patches, and hence in practice
the CPT may not require a very high-dimensional collection of filter functions
to be effective at distinguishing images.

Definition 16 For a given function f : P → Rd, we say that a filter function
g : B → Rd is convolutionally orthogonal to f if f ∗ g = 0, i.e. (f ∗ g)(r) = 0 for all
r ∈ R. We write f‡ to indicate all functions convolutionally orthogonal to f .

Corollary 2 Let f1, f2 : P → Rd be two functions, and write G = (f‡1 ∩ f
‡
2)⊥,

the orthogonal complement of the subspace of all functions convolutionally orthog-

onal to both f1 and f2. If Diag(f̂1 ∗ g) = Diag(f̂2 ∗ g) for all g ∈ G, then
CPT (f1) = CPT (f2), and the same is true replacing persistence diagrams with Euler
characteristic curves.

Proof If f1 and f2 have the same persistence diagram when convolving with a func-
tion g ∈ G, they also have the same diagram after convolving with g+ h for h ∈ G⊥,
due to the linearity of convolution.

�

5 Experiments

In this section, we consider how convolutional persistence compares with
ordinary persistence in machine learning applications. We focus on image clas-
sification, which involves image convolutional persistence, leaving experiments
with simplicial convolutional persistence for future work. Our aim is not to
argue that persistence-based methods are superior to other methods for the
tasks at hand. Nor we do try to demonstrate the computational advantages of
downsampling, as this has already been shown in (Solomon et al, 2021b), so
we use convolutions where the original image and the convolved image have
the same dimensions, i.e. a unit stride vector (1, 1). In all our computations,
we build a simplicial complex wherein the pixels are the top-dimensional
simplices, rather than the vertices; this is the second construction in Section
2.2, and is in line with how the Giotto toolkit computes cubical persistence

24 Convolutional Persistence Transforms

(Tauzin et al, 2021). Code for running experiments with convolutional persis-
tence can be found at https://github.com/yesolomon/convpers.

Classification Tasks

In what follows, we consider five datasets:

1. The UCI digits dataset (Alpaydin and Kaynak, 1998). The images are 8×8.
This dataset has 5620 images.

2. The MNIST dataset (Deng, 2012). The images are 28×28, and 5000 random
images were chosen for the dataset.

3. An MNIST-like dataset of Chinese digits (Nazarpour and Chen, 2017).
There are 15 classes, for a baseline accuracy of 1/15 ≈ 0.066. See Figure
9 for examples. To speed up computations, a 2× 2 max pooling is applied
before computing persistence. The original images are 64 × 64, and are
32× 32 after max pooling. 5000 random images were chosen the dataset.

4. An MNIST-like dataset of characters in the Devanagari script (Acharya
et al, 2015). There are 46 classes, for a baseline accuracy of 1/46 ≈ 0.0217.
See Figure 10 for examples. The images are 32 × 32, and 5000 random
images were chosen for the dataset.

5. A dataset of solutions to the Kuramoto-Sivashinsky PDE. This is a PDE
of relevance in many systems exhibiting pattern formation (Cuerno and
Barabási, 1995; Motta et al, 2012; Villain, 1991; Wolf, 1991; Golovin and
Davis, 1998). This PDE was studied in the context of topological machine
learning by Adams et al. (Adams et al, 2017), in which they consider the
anisotropic form of the PDE:

ut = −∇2u−∇2∇2u+ r(ux)2 + (uy)2.

Starting from random initial conditions, we solve these PDEs out to time
t = 15 for a range of r values, r ∈ {1, 1.25, 1.5, 1.75, 2}. The classification
task is then parameter estimation: giving a 2D image of the solution to the
PDE, guess the r parameter that produced it. See Figure 11 for examples.
The images are 50 × 50, and 500 images were generated for each r value,
giving a dataset of 2500 points.

In all of our datasets, the images are small enough that the convolutions are
defined to preserve the resolution, rather than downsample. The goal here is
to ignore the computational advantages of convolutional persistence and focus
only on the gains in discriminative power. For each dataset, we consider five
versions of the CPT:

• Using a trivial 1×1 filter [1], which is equivalent to computing the persistence
of the original image.

• Adding, in addition to the trivial filter, three more “standard” filters:
sharpening, blur, and Gaussian kernels, all 3× 3.

https://github.com/yesolomon/convpers

e

Convolutional Persistence Transforms 25

Fig. 9 Examples of chinese digit figures.

.

Fig. 10 Examples of Devanagari script figures.

.

26 Convolutional Persistence Transforms

Fig. 11 Examples of Kuramoto-Sivashinsky figures. Note how the cells become vertically
stretched for larger values of r.

.

Fig. 12 Zero- and one-dimensional persistence diagram for a chinese digit corresponding to
“2”. The sublevelset filtrations begins by adding dark regions and then includes regions with
increasingly larger values, indicated with brighter colors. Even with the 10x10 resolution,
we see clearly that the dark region has one connected component and two persistent cycles.

• Applying PCA to the space of 3× 3 image patches to obtain the top-three
principal component patches, and then generating five kernels as random
normalized linear combinations of these patches. This approach is motivated
by Corollary 2, which says that, for the purposes of injectivity, one can
ignore filters orthogonal to those found in the patches of the dataset. We
call the resulting kernels eigenfilters.

• Taking 5 random, normalized 3× 3 filters.
• Taking 25 random, normalized 3× 3 filters.

For each version of the CPT, we consider four vectorizations:

• Vectorize using persistence images (default setting, 10×10 resolution), con-
catenating across both homological dimensions and across filters. Thus, if
there are B filters, the resulting vector has length 200B. See Figure 12 for
a visualization of the persistence images of an image in the Chinese digits
dataset.

• Vectorize using persistence images, as above, but average along filters rather
than concatenating, giving a vector of length 200.

• Vectorize using total persistence, concatenating across both homological
dimensions and across filters. Thus, if there are B filters, the resulting vector
has length 2B.

• Vectorize using total persistence, as above, but average along filters rather
than concatenating, giving a vector of length 2.

e

Convolutional Persistence Transforms 27

Finally, for each vectorization, we test the topological features on the
classification task using the following three models:

• A 3-nearest-neighbors classifier.
• Gradient boosting trees, 10 estimators.
• A neural network model with two hidden layers with 100 units each,

leakyRELU activations on the hidden layers and softmax on the final layer,
and adam optimizer. Trains for 50 epochs with batch size 4.

Though this series of experiments does not fully explore all the choices,
applications, or features of the CPT, it is sufficiently diverse to allow for some
interesting insights and the observation of recurrent patterns. Moreover, the
experimental pipeline chosen is very simple and does not rely on any careful
engineering of features or models.

In Table 5, we indicate the time it takes to compute the persistence
diagrams for all the images in the data set and transform the results into con-
catenated persistence image vectors. Other steps in the computational pipeline,
like performing convolutions, are extremely fast, so the computing time for
convolutional persistence using 10 filters is very close to 10 times the values
found in the table. Distributing the persistence calculations across different
processors, as well as convolving with larger stride vectors (to shrink image
resolution) both provide major speedups (as discussed earlier).

UCI Digits MNIST Chinese Digits Devanagari Script KS PDEs
processing time 2.4s 28.6s 22.8s 21.1s 21.6s

Table 1 Computing Time for Persistence Calculations

As many components of the experimental set-up are stochastic, such as
the random filters used and the initializations of the neural nets, we perform
10 simulations for each combination of experimental hyperparameters, setting
aside 20% of the data as a testing set to compute model accuracy. For each
choice of filters and vectorization, the model with the highest average is chosen,
and the standard deviation of its accuracy across the 10 simulations is shown
in the bar plot. NN indicates nearest neighbors, Tree is gradient boosting trees,
and DL is deep learning, i.e. neural networks.

Results

• Digits: Convolutional persistence provides great improvements in predictive
accuracy. The best results come from concatenating features rather than
averaging them. Total persistence is very powerful when many random fil-
ters are used. When using only five filters, eigenfilters outperforms random
filters. For this dataset, the best average accuracies were achieved using deep
learning. See Figure 13.

28 Convolutional Persistence Transforms

• MNIST: Convolutional persistence against boosts predictive accuracy by a
large margin. Similar trends to the digits dataset, although the best models
are not always neural networks. See Figure 14.

• Chinese digits: For this dataset, five eigenfilters are significantly better
than five random filters. Moreover, the best vectorization is given by
concatenating total persistence scores. See Figure 15.

• Devanagari: For this dataset, taking five random filters performs about as
well as taking five eigenfilters. The best average performance is given by
concatenating persistence images, but similar accuracy with lower standard
deviation is given by a nearest neighbor classifier on the concatenated total
persistence vectors. See Figure 16.

• Kuramoto-Sivashinsky: The advantages of convolutional persistence are evi-
dent but less dramatic. As in the prior two experiments, the concatenated
total persistence vectors for 25 random filters is significantly more infor-
mative than any vectorizations of ordinary persistence. Better performance
(over 95%!) is possible using neural networks on the concatenated persis-
tence image vector, but this is less stable to some of the experimental
hyperparameters. See Figure 17.

Observations & Discussion

We conclude this experimental section with a few comments.

• Random filters consistently work well at providing informative features,
although there is little theoretical justification for why this should be the
case. It is possible that this is related to Johnson-Lindenstrauss theory
(Lindenstrauss, 1984), which shows that random projections are good at
preserving the geometry of high-dimensional point clouds.

• It is also surprising that total persistence is such an effective vectorization
across multiple experiments, despite being so reductive.

• Given that eigenfilters tend to outperform random filters, it would be inter-
esting (and easy) to compare 25 random linear combinations of eigenfilters
with 25 random filters.

• In our eigenfilters experiments, we opt for taking multiple random combi-
nations of the top eigenfilters, rather than using the eigenfilters themselves,
and taking more of them. This was based on some theoretical heuristics and
small-scale experiments, but there is otherwise no reason to suggest why one
approach is generally superior to the other.

• We did not apply any feature engineering before applying our machine learn-
ing models. For example, the concatenated persistence images vectors were
fairly large, 5000-dimensional in the case of 25 random filters, and per-
formance might be improved by pre-applying a dimensionality reduction
method like PCA.

• Similarly, we did not do any engineering of our machine learning models,
fixing a simple neural network architecture across all experiments. For the

e

Convolutional Persistence Transforms 29

Fig. 13 Results for the digits dataset.

Fig. 14 Results for the MNIST dataset.

Kuramoto-Sivashinsky PDE dataset, the high variance of the neural net-
work models suggests that significantly improved performance might be
achievable using the right architecture and training regime.

• Another hyper-parameter we did not test extensively is the size of the filters.
Some preliminary experiments suggest that 4×4 filters outperform the 3×3
filters used here, but it remains to be seen if this phenomenon is robust.

30 Convolutional Persistence Transforms

Fig. 15 Results for the chinese digits dataset.

Fig. 16 Results for the Devanagari dataset.

6 Conclusion

In this paper, we have proposed a novel approach to topological analysis of
images and simplicial complexes, based on combining convolutions and persis-
tent homology. Packaging this invariant as a topological transform, we have
shown that this transform is injective in a generic sense by viewing it as a spe-
cial case of the persistent homology transform. We have also provided diverse
experiments showing that convolutions are effective at improving the predic-
tive power of persistent homology for classification tasks. Looking forward,
there are multiple directions for future research.

e

Convolutional Persistence Transforms 31

Fig. 17 Results for the Kuramoto-Sivashinsky dataset.

• The injectivity theory for the PHT has been extended by results bound-
ing the number of vector directions needed to obtain injectivity for certain
classes of shapes, see (Curry et al, 2018; Belton et al, 2018; Fasy et al,
2019; Belton et al, 2020). It would be interesting to try and obtain simi-
lar, specialized results for the embedded cubical complexes appearing in this
paper.

• As of yet, there are no inverse stability results for the PHT, as were obtained
for the topological transform in (Solomon et al, 2021a) . That is, the regu-
larity of the inverse map from topological features to shapes has not been
investigated. It is possible that the restricted, discrete structure of the CPT
provides an easier setting for studying this question.

• Both versions of convolutional persistence explored in this paper are discrete.
It would be interesting to study convolutional persistence in the continuous
setting. The major obstacle to obtaining an inverse result in this setting is
that the inverse theory for the persistent homology transform, as derived
in (Turner et al, 2014; Curry et al, 2018; Ghrist et al, 2018), is that one
must work within an O-minimal structure of definable sets, so that one must
prove that all Euclidean embeddings used are definable in a precise sense.
This is immediate when working with discrete objects but presents a novel
technical challenge otherwise, and so falls outside of the scope of this paper.

• There are many choices to be made in the implementation of convolutional
persistence, and it is not clear which give the best result. For example,
whether using a big stride and many filters or a small stride and few filters is
preferable. Another experiment is to consider whether it is best to work with
eigenfilters directly, rather than random normalized linear combinations
thereof, as we have done here.

• We did not consider a pipeline in which the convolutional filters are trainable
parameters learned using the dataset. This is entirely possible, see (Carriere

32 Convolutional Persistence Transforms

et al, 2021; Solomon et al, 2021b), but presents multiple computational
challenge, as topological optimization is expensive and unstable, and the
topological energy landscape has many poor local minima. Still, this is an
interesting direction for future work.

• We considered persistence images and total persistence as vectorizations in
our experimental pipeline. Other possible vectorizations include persistence
landscapes (Bubenik et al, 2015) and Euler characteristic curves.

• The datasets explored here, though not synthetic, are fairly simplistic, and
such classification tasks have been solved by deep learning methods which
surpasses human accuracy (Russakovsky et al, 2015). A natural next step
is to consider more challenging settings, particularly in the data-starved
regime, where topological features have proved useful (Khramtsova et al,
2022) for obtaining start-of-the-art performance, and see if convolutional
persistence can further boost the accuracy of such models.

• Finally, it would be interesting to experiment with multi-channel images (e.g.
RGBα), 3D images (as often arise in medical imaging), as well as datasets
of simplicial complexes (like graphs, meshes).

References

Acharya S, Pant AK, Gyawali PK (2015) Deep learning based large scale hand-
written devanagari character recognition. In: 2015 9th International con-
ference on software, knowledge, information management and applications
(SKIMA), IEEE, pp 1–6

Adams H, Emerson T, Kirby M, et al (2017) Persistence images: A stable
vector representation of persistent homology. Journal of Machine Learning
Research 18

Alpaydin E, Kaynak C (1998) Optical recognition of handwritten digits data
set. UCI Machine Learning Repository

Aukerman A, Carrière M, Chen C, et al (2020) Persistent homology based
characterization of the breast cancer immune microenvironment: a feasibil-
ity study. In: 36th International Symposium on Computational Geometry
(SoCG)

Belton RL, Fasy BT, Mertz R, et al (2018) Learning simplicial complexes from
persistence diagrams. arXiv preprint arXiv:180510716

Belton RL, Fasy BT, Mertz R, et al (2020) Reconstructing embedded graphs
from persistence diagrams. Computational Geometry 90:101,658

Bendich P, Bubenik P, Wagner A (2020) Stabilizing the unstable output of
persistent homology computations. Journal of Applied and Computational
Topology 4(2):309–338

e

Convolutional Persistence Transforms 33

Bestvina M, Brady N (1997) Morse theory and finiteness properties of groups.
Inventiones mathematicae 129(3):445–470

Bleile B, Garin A, Heiss T, et al (2021) The persistent homology of dual digital
image constructions. arXiv preprint arXiv:210211397

Botnan MB, Lesnick M (2022) An introduction to multiparameter persistence.
arXiv preprint arXiv:220314289

Bubenik P, Wagner A (2020) Embeddings of persistence diagrams into hilbert
spaces. Journal of Applied and Computational Topology 4(3):339–351

Bubenik P, et al (2015) Statistical topological data analysis using persistence
landscapes. J Mach Learn Res 16(1):77–102

Buchet M, Chazal F, Dey TK, et al (2014) Topological analysis of scalar fields
with outliers. arXiv preprint arXiv:14121680

Calcina SS, Gameiro M (2021) Parameter estimation in systems exhibiting
spatially complex solutions via persistent homology and machine learning.
Mathematics and Computers in Simulation 185:719–732

Carlsson G (2009) Topology and data. Bulletin of the American Mathematical
Society 46(2):255–308

Carlsson G, Ishkhanov T, De Silva V, et al (2008) On the local behavior of
spaces of natural images. International journal of computer vision 76(1):1–12

Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for
points on 3d shapes. In: Computer graphics forum, Wiley Online Library,
pp 1–12

Carriere M, Chazal F, Glisse M, et al (2021) Optimizing persistent homology
based functions. In: International conference on machine learning, PMLR,
pp 1294–1303

Chung YM, Day S (2018) Topological fidelity and image thresholding: A per-
sistent homology approach. Journal of Mathematical Imaging and Vision
60(7):1167–1179

Chung YM, Day S, Hu CS (2022) A multi-parameter persistence framework
for mathematical morphology. Scientific reports 12(1):1–25

Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence
diagrams. Discrete & computational geometry 37(1):103–120

Crawford L, Monod A, Chen AX, et al (2020) Predicting clinical outcomes
in glioblastoma: an application of topological and functional data analysis.

34 Convolutional Persistence Transforms

Journal of the American Statistical Association 115(531):1139–1150

Cuerno R, Barabási AL (1995) Dynamic scaling of ion-sputtered surfaces.
Physical review letters 74(23):4746

Curry J (2018) The fiber of the persistence map for functions on the interval.
Journal of Applied and Computational Topology 2(3):301–321

Curry J, Mukherjee S, Turner K (2018) How many directions determine a
shape and other sufficiency results for two topological transforms. arXiv
preprint arXiv:180509782

Deng L (2012) The mnist database of handwritten digit images for machine
learning research [best of the web]. IEEE signal processing magazine
29(6):141–142

Di Fabio B, Ferri M (2015) Comparing persistence diagrams through complex
vectors. In: International Conference on Image Analysis and Processing,
Springer, pp 294–305

Edelsbrunner H, Harer J (2010) Computational topology: an introduction

Fasy BT, Micka S, Millman DL, et al (2019) Persistence diagrams for efficient
simplicial complex reconstruction. arXiv preprint arXiv:191212759 1:5

Gabrielsson RB, Nelson BJ, Dwaraknath A, et al (2020) A topology layer for
machine learning. In: International Conference on Artificial Intelligence and
Statistics, PMLR, pp 1553–1563

Gameiro M, Hiraoka Y, Obayashi I (2016) Continuation of point clouds via
persistence diagrams. Physica D: Nonlinear Phenomena 334:118–132

Ghrist R (2008) Barcodes: the persistent topology of data. Bulletin of the
American Mathematical Society 45(1):61–75

Ghrist R, Levanger R, Mai H (2018) Persistent homology and euler integral
transforms. Journal of Applied and Computational Topology 2(1):55–60

Giunti B, Houry G, Kerber M (2021) Average complexity of matrix reduction
for clique filtrations. arXiv preprint arXiv:211102125

Golovin AA, Davis SH (1998) Effect of anisotropy on morphological instability
in the freezing of a hypercooled melt. Physica D: Nonlinear Phenomena
116(3-4):363–391

Hewitt E, Ross KA (2012) Abstract Harmonic Analysis: Volume I Structure
of Topological Groups Integration Theory Group Representations, vol 115.
Springer Science & Business Media

e

Convolutional Persistence Transforms 35

Hiraoka Y, Nakamura T, Hirata A, et al (2016) Hierarchical structures of
amorphous solids characterized by persistent homology. Proceedings of the
National Academy of Sciences 113(26):7035–7040

Hu X, Li F, Samaras D, et al (2019) Topology-preserving deep image
segmentation. Advances in neural information processing systems 32

Jiang Q, Kurtek S, Needham T (2020) The weighted euler curve transform for
shape and image analysis. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, pp 844–845

Kaczynski T, Mischaikow KM, Mrozek M (2004) Computational homology,
vol 3. Springer

Khramtsova E, Zuccon G, Wang X, et al (2022) Rethinking persistent
homology for visual recognition. arXiv e-prints pp arXiv–2207

Kim K, Kim J, Zaheer M, et al (2020) Pllay: Efficient topological layer based on
persistent landscapes. Advances in Neural Information Processing Systems
33:15,965–15,977

Kipf TN, Welling M (2016) Semi-supervised classification with graph convo-
lutional networks. arXiv preprint arXiv:160902907

Lacombe T, Cuturi M, Oudot S (2018) Large scale computation of means
and clusters for persistence diagrams using optimal transport. Advances in
Neural Information Processing Systems 31

Leygonie J, Henselman-Petrusek G (2021) Algorithmic reconstruction of
the fiber of persistent homology on cell complexes. arXiv preprint
arXiv:211014676

Leygonie J, Tillmann U (2022) The fiber of persistent homology for simplicial
complexes. Journal of Pure and Applied Algebra p 107099

Lindenstrauss WJJ (1984) Extensions of lipschitz maps into a hilbert space.
Contemp Math 26(189-206):2

Maria C, Oudot S, Solomon E (2019) Intrinsic topological transforms via the
distance kernel embedding. arXiv preprint arXiv:191202225

Milosavljević N, Morozov D, Skraba P (2011) Zigzag persistent homology in
matrix multiplication time. In: Proceedings of the twenty-seventh Annual
Symposium on Computational Geometry, pp 216–225

Monod A, Kalisnik S, Patino-Galindo JÁ, et al (2019) Tropical sufficient
statistics for persistent homology. SIAM Journal on Applied Algebra and
Geometry 3(2):337–371

36 Convolutional Persistence Transforms

Motta FC, Shipman PD, Bradley RM (2012) Highly ordered nanoscale sur-
face ripples produced by ion bombardment of binary compounds. Journal of
Physics D: Applied Physics 45(12):122,001

Nazarpour K, Chen M (2017) Handwritten Chinese Numbers https://
doi.org/10.17634/137930-3, URL https://data.ncl.ac.uk/articles/dataset/
Handwritten Chinese Numbers/10280831

Otter N, Porter MA, Tillmann U, et al (2017) A roadmap for the computation
of persistent homology. EPJ Data Science 6:1–38

Oudot S, Solomon E (2017) Barcode embeddings for metric graphs. arXiv
preprint arXiv:171203630

Oudot S, Solomon E (2020) Inverse problems in topological persistence. In:
Topological Data Analysis. Springer, p 405–433

Oudot SY (2015) Persistence theory: from quiver representations to data
analysis, vol 209. American Mathematical Society Providence

Oudot SY (2017) Persistence theory: from quiver representations to data
analysis, vol 209. American Mathematical Soc.

Pham K, Le K, Ho N, et al (2020) On unbalanced optimal transport: An
analysis of sinkhorn algorithm. In: International Conference on Machine
Learning, PMLR, pp 7673–7682

Poulenard A, Skraba P, Ovsjanikov M (2018) Topological function optimiza-
tion for continuous shape matching. In: Computer Graphics Forum, Wiley
Online Library, pp 13–25

Russakovsky O, Deng J, Su H, et al (2015) Imagenet large scale visual recog-
nition challenge. International journal of computer vision 115(3):211–252

Skraba P, Turner K (2020) Wasserstein stability for persistence diagrams.
arXiv preprint arXiv:200616824

Solomon E, Wagner A, Bendich P (2021a) From geometry to topology: Inverse
theorems for distributed persistence. arXiv preprint arXiv:210112288

Solomon E, Wagner A, Bendich P (2022) From Geometry to Topology:
Inverse Theorems for Distributed Persistence. In: Goaoc X, Kerber M
(eds) 38th International Symposium on Computational Geometry (SoCG
2022), Leibniz International Proceedings in Informatics (LIPIcs), vol 224.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany,
pp 61:1–61:16, https://doi.org/10.4230/LIPIcs.SoCG.2022.61, URL https:
//drops.dagstuhl.de/opus/volltexte/2022/16069

https://doi.org/10.17634/137930-3
https://doi.org/10.17634/137930-3
https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831
https://data.ncl.ac.uk/articles/dataset/Handwritten_Chinese_Numbers/10280831
https://doi.org/10.4230/LIPIcs.SoCG.2022.61
https://drops.dagstuhl.de/opus/volltexte/2022/16069
https://drops.dagstuhl.de/opus/volltexte/2022/16069

e

Convolutional Persistence Transforms 37

Solomon Y, Wagner A, Bendich P (2021b) A fast and robust method for
global topological functional optimization. In: International Conference on
Artificial Intelligence and Statistics, PMLR, pp 109–117

Suzuki A, Miyazawa M, Minto JM, et al (2021) Flow estimation solely from
image data through persistent homology analysis. Scientific reports 11(1):1–
13

Tauzin G, Lupo U, Tunstall L, et al (2021) giotto-tda:: A topological data
analysis toolkit for machine learning and data exploration. J Mach Learn
Res 22(39):1–6

Turner K, Mukherjee S, Boyer DM (2014) Persistent homology transform for
modeling shapes and surfaces. Information and Inference: A Journal of the
IMA 3(4):310–344

Villain J (1991) Continuum models of crystal growth from atomic beams with
and without desorption. Journal de physique I 1(1):19–42

Villani C (2021) Topics in optimal transportation, vol 58. American Mathe-
matical Soc.

Wagner A (2021) Nonembeddability of persistence diagrams with p¿ 2
wasserstein metric. Proceedings of the American Mathematical Society
149(6):2673–2677

Wolf DE (1991) Kinetic roughening of vicinal surfaces. Physical review letters
67(13):1783

	Overview
	Results
	Organization

	Background
	Persistent Homology
	Image Cubical Complexes
	Comparing Persistence Diagrams
	Computational Complexity
	Properties of Persistent Homology

	Convolutional Persistence
	Image Convolutional Persistence
	Simplicial Convolutional Persistence
	Prior Work

	Theoretical Results
	Stability
	Inverse Theory

	Experiments
	Conclusion

