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Abstract

A topological approach to stratification learning is developed for point cloud data drawn from a stratified space. Given
such data, our objective is to infer which points belong to the same strata. First we define a multi-scale notion of a stratified
space, giving a stratification for each radius level. We then use methods derived from kernel and cokernel persistent homol-
ogy to cluster the data points into different strata, and we prove a result which guarantees the correctness of our clustering,
given certain topological conditions; some geometric intuition for these topological conditions is also provided. Our correct-
ness result is then given a probabilistic flavor: we give bounds on the minimum number of sample points required to infer,
with probability, which points belong to the same strata. Finally, we give an explicit algorithm for the clustering, prove its
correctness, and apply it to some simulated data.

AMS Subject Classifications 55, 60, 68, 32S60.

1 Introduction
Manifold learning is a basic problem in geometry, topology, and statistical inference that has received a great deal
of attention. The basic idea is as follows: given a point cloud of data sampled from a manifold in an ambient space
Rk, infer the underlying manifold. A limitation of the problem statement is that it does not apply to sets that are
not manifolds. For example, we may consider the more general class of stratified spaces that can be decomposed
into strata, which are manifolds of varying dimension, each of which fit together in some uniform way inside the
higher dimensional space.

In this paper, we study the following problem in stratification learning: given a point cloud sampled from a
stratified space, how do we cluster the points so that points in the same cluster are in the same stratum, while
points in different clusters are not? Intuitively, the strategy should be clear: two points belong in the same stratum
if they “look the same locally,” meaning that they have identical neighborhoods, within the larger space, at some
very small scale. However, the notion of “local” becomes unclear in the context of sampling uncertainty, since
everything becomes quite noisy at vanishingly small scale. In response, we introduce a radius parameter r and
define a notion of local equivalence at each such r.

Our tools are derived from algebraic topology. In particular, we define local equivalence between points via
maps between relative homology groups, and we then attempt to infer this relation by using ideas coming from
persistent homology [15].

Prior Work Consistency in manifold learning has often been recast as a homology inference statement: as the
number of points in a point cloud goes to infinity, the inferred homology converges to the true homology of the
underlying space. Results of this nature have been given for manifolds [28, 29] and a large class of compact
subsets of Euclidean space [6]. Stronger results in homology inference for closed subsets of a metric space are
given in [11].

Geometric approaches to stratification inference have been developed. These include inference of a mixture
of linear subspaces [25], mixture models for general stratified spaces [21], and generalized Principal Component
Analysis (GPCA) [32] which was developed for dimension reduction for mixtures of manifolds.
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The study of stratified spaces has long been a focus of pure mathematics; see, for example, [19, 33]. The
problem of inference for the local homology groups of a sampled stratified space in a deterministic setting has
been addressed in [3].

Results In this paper we propose an approach to stratification inference based on local homology inference;
more specifically, based on inference of the kernels and cokernels of several maps between groups closely related
to the multi-scale local homology groups for different pairs of points in the sample. The results in this paper are:
(1) a topological definition of two points belonging to the same strata by assessing the multi-scale local structure
of the points through kernel and cokernel persistent homology; (2) topological conditions on the point sample
under which the topological characterization holds – we call this topological inference; (3) a geometric intuition
of these topological conditions based on quantities related to reach and to the gradient of a distance function;
(4) finite sample bounds for the minimum number of points in the sample required to state with high probability
which points belong to the same strata; (5) an algorithm that computes which points belong to the same strata and
a proof of correctness for some parts of this algorithm.

Outline We review the needed background in Section 2. In Section 3, we give the topological inference theorem
and provide some geometric intuition. The probabilistic statements are provided in Section 4. We describe the
clustering algorithm in Section 5; the correctness proof of the algorithm is contained in three Appendices, A
through C. The main body of the paper closes with some further discussion in Section 7.

2 Background
We review necessary background on persistent homology and stratified spaces. The treatment of the former
here is mostly adapted from [5], although we present the material in slightly simplified form. We first describe
general persistence modules, focusing mainly on those that arise from maps between homology groups induced
by inclusions of topological spaces. We then discuss stratifications and their connection to the local homology
groups of a topological space. Basics on homology itself are assumed; for a readable background, see [27] or
[22], or [15] for a more computationally oriented treatment.

2.1 Persistence Modules
In [5], the authors define persistence modules over an arbitrary commutative ring R with unity. For simplicity,
we restrict immediately to the case R = Z/2Z. Let A be some subset of R. Then a persistence module FA is a
collection {Fα}α∈A of Z/2Z-vector spaces, together with a family {fβα : Fα → Fβ}α≤β∈A of linear maps such
that α ≤ β ≤ γ implies fγα = fγβ ◦ fβα . We will assume that the index set A is either R or R≥0 and not explicitly
state indices unless necessary.

A real number α is said to be a regular value of the persistence module F if there exists some ε > 0 such that
the map fα+δ

α−δ is an isomorphisms for each δ < ε. Otherwise we say that α is a critical value of the persistence
module; if A = R≥0, then α = 0 will always be considered to be a critical value. We say that F is tame if it has
a finite number of critical values and if all the vector spaces Fα are of finite rank. Any tame R≥0-module F must
have a smallest non-zero critical value ρ(F); we call this number the feature size of the persistence module.

Assume F is tame and so we have a finite ordered list of critical values 0 = c0 < c1 < . . . < cm. We choose
regular values {ai}mi=0 such that ci−1 < ai−1 < ci < ai for all 1 ≤ i ≤ m, and we adopt the shorthand notation
Fi ≡ Fai and f ji : Fi → Fj , for 0 ≤ i ≤ j ≤ m. A vector v ∈ Fi is said to be born at level i if v 6∈ im f ii−1, and
such a vector dies at level j if f ji (v) ∈ im f ji−1 but f j−1

i (v) 6∈ im f j−1
i−1 . This is illustrated in Figure 1. We then

define P i,j to be the vector space of vectors that are born at level i and then subsequently die at level j, and βi,j

denotes its rank.

2.1.1 Persistence Diagrams

The information contained within a tame module F is often compactly represented by a persistence diagram,
Dgm(F). This diagram is a multi-set of points in the extended plane. It contains βi,j copies of the points (ci, cj),
as well as infinitely many copies of each point along the major diagonal y = x. In Figure 3 the persistence
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Figure 1: The vector v is born at level i and then it dies at level j.
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Figure 2: Commuting diagrams for strongly interleaving persistence modules.

diagrams for a curve and a point cloud sampled from it are displayed; see Section 2.2 for a full explanation of this
figure.

For any two points u = (x, y) and u′ = (x′, y′) in the extended plane, we define ||u − u′||∞ = max{|x −
x′|, |y − y′|}. We define the bottleneck distance between any two persistence diagrams D and D′ to be:

dB(D,D′) = inf
Γ:D→D′

sup
u∈D
||u− Γ(u)||∞,

where Γ ranges over all bijections from D to D′. Under certain conditions which we now describe, persistence
diagrams will be stable under the bottleneck distance.

Two persistence modules F and G are said to be strongly ε-interleaved if, for some positive ε, there exist two
families {ξα : Fα → Gα+ε}α and {ψα : Gα → Fα+ε} of linear maps which commute with the module maps
{fβα} and {gβα} in the appropriate manner. More precisely, we require that, for each α ≤ β, the four diagrams in
Figure 2.all commute.

We can now state the diagram stability result ([5], Theorem 4.4), that we will need later in this paper.

Theorem 2.1 (Diagram Stability Theorem) Let F and G be tame persistence modules and ε > 0. If F and G
are strongly ε-interleaved, then

dB(Dgm(F),Dgm(G)) ≤ ε.

When we wish to compute the persistence diagram associated to a module F , it is often convenient to substi-
tute another module G, usually one defined in terms of simplicial complexes or other computable objects. The
following theorem ([15], p.159) gives a condition under which this is possible.

Theorem 2.2 (Persistence Equivalence Theorem) Given two persistence modules F and G, suppose there exist
for each α isomorphisms Fα ∼= Gα which commute with the module maps, then Dgm(F) = Dgm(G).

2.1.2 (Co)Kernel Modules

Suppose now that we have two persistence modules F and G along with a family of maps {φα : Fα → Gα}
which commute with the module maps – for every pair α ≤ β, we have gβα ◦φα = φβ ◦ fβα . In other words, every
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Figure 3: Illustration of a point cloud and its persistence diagram. Top: X is the curve embedded as shown in the plane and U is the point
cloud. Bottom left: the persistence diagram Dgm1(dX); Bottom right: the persistence diagram Dgm1(dU ).

square commutes in the diagram below:

. . .→Fα
fβα−−→ Fβ → . . .

↓ φα ↓ φβ

. . .→Gα
gβα−→ Gβ → . . .

Then, for each pair of real numbers α ≤ β, the restriction of fβα to kerφα maps into kerφβ , giving rise to a new
kernel persistence module, with persistence diagram denoted by Dgm(kerφ). Similarly, we obtain a cokernel
persistence module, with diagram Dgm(cokφ).

2.2 Homology
Our main examples of persistence modules all come from homology groups, either absolute or relative, and the
various maps between them. Homology persistence modules can arise from families of topological spaces {Xα},
along with inclusions Xα ↪→ Xβ for all α ≤ β. Whenever we have such a family, the inclusions induce maps
Hj(Xα) → Hj(Xβ), for each homological dimension j ≥ 0, and hence we have persistence modules for each
j. Defining H(Xα) =

⊕
j Hj(Xα) and taking direct sums of maps in the obvious way, will also give one large

direct-sum persistence module {H(Xα)}.

2.2.1 Distance Functions

Here, the families of topological spaces will be produced by the sublevel sets of distance functions. Given a
topological space X embedded in some Euclidean space RN , we define dX as the distance function which maps
each point in the ambient space to the distance from its closest point in X. More formally, for each y ∈ RN ,
dX(y) = infx∈X dist (x, y). We let Xα denote the sublevel set d−1

X [0, α]; each sublevel set should be thought of
as a thickening of X within the ambient space. Increasing the thickening parameter produces a growing family
of sublevel sets, giving rise to the persistence module {H(Xα)}α∈R≥0; we denote the persistence diagram of
this module by Dgm(dX) and use Dgmj(dX) for the diagrams of the individual modules for each homological
dimension j.

In Figure 3, we see an example of such an X embedded in the plane, along with the persistence diagram
Dgm1(dX). We also have the persistence diagram Dgm1(dU ), where U is a dense point sample of X. Note that
the two diagrams are quite close in bottleneck distance. Indeed, the difference between the two diagrams will
always be upper-bounded by the Hausdorff distance between the space and its sample; this follows from Theorem
2.1.

Persistence modules of relative homology groups also arise from families of pairs of spaces, as the next
example shows. Referring to the left part of Figure 4, we let X be the space drawn in solid lines and B the closed
ball whose boundary is drawn as a dotted circle. By restricting dX to B and also to ∂B, we produce pairs of
sublevel sets (Xα ∩ B,Xα ∩ ∂B). Using the maps induced by the inclusions of pairs, we obtain the persistence
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Figure 4: Left: The space X is in solid line and the closed ball B has dotted boundary. Right: the persistence diagram for the module
{H1(Xα ∩B,Xα ∩ ∂B)}.

= + + +

Figure 5: The coarsest stratification of a pinched torus with a spanning disc stretched across the hole.

module {H(Xα ∩ B,Xα ∩ ∂B)}α∈R≥0 of relative homology groups. The persistence diagram, for homological
dimension 1, appears on the right half of Figure 4.

2.3 Stratified Spaces
We assume that we have a topological space X embedded in some Euclidean space RN . A (purely) d-dimensional
stratification of X is a decreasing sequence of closed subspaces

X = Xd ⊇ Xd−1 ⊇ . . .X0 ⊇ X−1 = ∅,

such that for each i, the i-dimensional stratum Si = Xi − Xi−1 is a (possibly empty) i-manifold. The connected
components of Si are called i-dimensional pieces. This is illustrated in Figure 5, where the space X is a pinched
torus with a spanning disc stretched across the hole.

One usually also imposes a requirement to ensure that the various pieces fit together uniformly. There are a
number of different ways this can be done (see [23] for an extensive survey). For example, one might assume that
for each x ∈ Si, there exists a small enough neighborhood N(x) ⊆ X and a (d − i − 1)-dimensional stratified
space Lx such that N(x) is stratum-preserving homeomorphic to the product of an i-ball and the cone on Lx; one
can then show that the space Lx depends only on the particular piece containing x. This definition is illustrated
in Figure 6.

Since the topology on X is that inherited from the ambient space, this neighborhood N(x) will take the form
X ∩Br(x), where Br(x) is a small enough ball around x in the ambient space.

x

y

Figure 6: The cones c(Lx) and c(Ly), where x and y are respectively in the 0-stratum and the 1-stratum, are highlighted.
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We note that the above definition requires all strata to be contained within the closure of the top-dimensional
stratum. It is also possible, of course, to have spaces where this is not the case: for example, a two-dimensional
plane that has been punctured by a line. In this case, a slight adjustment to the above definitions can be made in
order to impose similar notions of uniformity.

2.3.1 Local Homology and Homology Stratifications

Recall ([27]) that the local homology groups of a space X at a point x ∈ X are the groups Hi(X,X − x) in each
homological dimension i. If X happens to be a d-manifold, or if x is simply a point in the top-dimensional stratum
of a d-dimensional stratification, then these groups are rank one in dimension d and trivial in all other dimensions.
On the other hand, the local homology groups for lower-stratum points can be more interesting; for example if x
is the crossing point in Figure 7, then H1(X,X− x) has rank three.

If x and y are close enough points in a particular piece of the same stratum, then there is a natural isomorphism
between their local homology groups H(X,X − x) ∼= H(X,X − y), which can be understood in the following
manner. Taking a small enough radius r and using excision, we see that the two local homology groups in
question are in fact just H(X ∩ Br(x),X ∩ ∂Br(x)) and H(X ∩ Br(y),X ∩ ∂Br(y)). Both of these groups will
then map, via intersection of chains, isomorphically into the group H(X ∩ Br(x) ∩ Br(y), ∂(Br(x) ∩ Br(y)),
and the isomorphism above is then derived from these two maps. See the points in Figure 7 for an illustration of
this idea.

In [31], the authors define the concept of a homology stratification of a space X. Briefly, they require a
decomposition of X into pieces such that the locally homology groups are locally constant across each piece;
more precisely, that the maps discussed above be isomorphisms for each pair of close enough points in each
piece.

3 Topological Inference Theorem
From the discussion above, it is easy to see that any stratification of a topological space will also be a homology
stratification. The converse is unfortunately false. However, we can build a useful analytical tool based on the
contrapositive: given two points in a point cloud, we can hope to state, based on their local homology groups and
the maps between them, that the two points should not be placed in the same piece of any stratification. To do
this, we first adapt the definition of these local homology maps into a more multi-scale and robust framework.
More specifically, we introduce a radius parameter r and a notion of local equivalence, ∼r, which allows us to
group the points of X, as well as of the ambient space, into strata at this radius scale. We then give the main result
of this section: topological conditions under which the point cloud U can be used to infer the strata at different
radius scales.

3.1 Local Equivalence
We assume that we are given some topological space X embedded in some Euclidean space in RN . For each
radius r ≥ 0, and for each pair of points p, q ∈ RN , we define the following homology map φX(p, q, r):

H(X ∩Br(p),X ∩ ∂Br(p))→ H(X ∩Br(p) ∩Br(q),X ∩ ∂(Br(p) ∩Br(q))). (1)

Intuitively, this map can be understood as taking a chain, throwing away the parts that lie outside the smaller range,
and then modding out the new boundary. Alternatively, one may think of it as being induced by a combination of
inclusion and excision. A formal definition is given in Appendix A.

Using these maps, we impose an equivalence relation on RN .

Definition 3.1 (Local equivalence) Two points x and y are said to have equivalent local structure at radius r,
denoted x ∼r y, iff there exists a chain of points x = x0, x1, . . . , xm = y from X such that, for each 1 ≤ i ≤ m,
the maps φX(xi−1, xi, r) and φX(xi, xi−1, r) are both isomorphisms.

In other words, x and y have the same local structure at this radius iff they can be connected by a chain of
points which are pairwise close enough and whose local homology groups at radius r map into each other via
intersection. Different choices of r will of course lead to different equivalence classes. For example, consider the
space X drawn in the plane as shown in the left half of Figure 7. At the radius drawn, point z is equivalent to the
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Figure 7: Left: x ∼r y, y �r z. Right: the 1-dim persistence diagram, for the kernel of the map going from the z ball into its intersection
with the y ball. A number, i.e., #2, labeling a point in the persistence diagram indicates its multiplicity.

cross point and is not equivalent to either the point x or y. Note that some points from the ambient space will now
be considered equivalent to x and y, and some others will be equivalent to z.

On the other hand, a smaller choice of radius would result in all three of x, y, and z belonging to the same
equivalence class.

3.1.1 (Co)Kernel Persistence

In order to relate the point cloud U to the equivalence relation ∼r, we must first define a multi-scale version of
the maps φX(p, q, r); we do so by gradually thickening the space X. Let dX : RN → R denote the function which
maps each point in the ambient space to the distance from its closest point on X. For each α ≥ 0, we define
Xα = d−1

X [0, α]. For each p, q, and r, we will consider the intersection map φX
α(p, q, r), which is defined by

substituting Xα for X in (1). Note of course that φX(p, q, r) = φX
0 (p, q, r).

For the moment, we fix a choice of p, q, and r, and we use the following shorthand:

BX
p (α) = Xα ∩Br(p),

∂BX
p (α) = Xα ∩ ∂Br(p),

BX
pq(α) = Xα ∩Br(p) ∩Br(q),

∂BX
pq(α) = Xα ∩ ∂(Br(p) ∩Br(q)).

and we also often write BX
p = BX

p (0) and BX
pq = BX

pq(0). By replacing X with U in this shorthand, we also write
BUp (α) = Uα ∩Br(p), and so forth.

For any pair of non-negative real valuesα ≤ β the inclusion Xα ↪→ Xβ gives rise to the following commutative
diagram:

H(BX
p (α), ∂BX

p (α))
φX
α−−→ H(BX

pq(α), ∂BX
pq(α))

↓ ↓

H(BX
p (β), ∂BX

p (β))
φX
β−−→ H(BX

pq(β), ∂BX
pq(β)) (2)

Hence there are maps kerφX
α → kerφX

β and cokφX
α → cokφX

β . Allowing α to increase from 0 to∞ gives rise
to two persistence modules, {kerφX

α} and {cokφX
α}, with diagrams Dgm(kerφX) and Dgm(cokφX). Recall that

a homomorphism is an isomorphism iff its kernel and cokernel are both zero. In our context then, the map φX is
an isomorphism iff neither Dgm(kerφX) nor Dgm(cokφX) contain any points on the y-axis above 0.

Example. As shown in the left part of Figure 7, x, y and z are points sampled from a cross embedded in
the plane. Taking r as drawn, we note that the right part of the figure displays Dgm1(kerφX), where φX =
φX(z, y, r); we now explain this diagram in some detail. The group H1(BX

z , ∂B
X
z ) has rank three; as a possible

basis we might take the three classes represented by the horizontal line across the ball, the vertical line across the
ball, and the two short segments defining the northeast-facing right angle. Under the intersection map φX = φX

0 ,
the first of these classes maps to the generator of H1(BX

zy, ∂B
X
zy), while the other two map to zero. Hence kerφX

0

has rank two. Both classes in this kernel eventually die, one at the α value which fills in the northeast corner of the
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larger ball, and the other at the α value which fills in the entire right half; these two values are the same here due
to symmetry in the picture. At this value, the map φX

α is an isomorphism and it remains so until the intersection
of the two balls fills in completely. This gives birth to a new kernel class which subsequently dies when the larger
ball finally fills in. The diagram Dgm1(kerφX) thus contains three points; the leftmost two show that the map φX

is not an isomorphism.

3.2 Inference Theorem
Given a point cloud U sampled from X consider the following question: for a radius r, how can we infer whether
or not any given pair of points in U has the same local structure at this radius? In this subsection, we prove
a theorem which describes the circumstances under which we can make the above inference. Naturally, any
inference will require that we use U to judge whether or not the maps φX(p, q, r) are isomorphisms. The basic
idea is that if U is a dense enough sample of X, then the (co)kernel diagrams defined by U will be good enough
approximations of the diagrams defined by X.

3.2.1 (Co)Kernel Stability

Again we fix p, q, and r, and write φX = φX(p, q, r). For each α ≥ 0, we let Uα = d−1
U [0, α]. We consider

φUα = φUα (p, q, r), defined by replacing X withUα in (1). Running α from 0 to∞, we obtain two more persistence
modules, {kerφUα} and {cokφUα}, with diagrams Dgm(kerφU ) and Dgm(cokφU ).

If U is a dense enough sample of X, then the (co)kernel diagrams defined by U will be good approximations
of the diagrams defined by X. More precisely, we have the following easy consequence of Theorem 2.1:

Theorem 3.1 ((Co)Kernel Diagram Stability) The bottleneck distances between the (co)kernel diagrams of φU

and φX are upper-bounded by the Hausdorff distance between U and X:

dB(Dgm(kerφU ),Dgm(kerφX)) ≤ dH(U,X),

dB(Dgm(cokφU ),Dgm(cokφX)) ≤ dH(U,X).

PROOF. We prove the first inequality; the proof of the second is identical. Put ε = dH(U,X). Then, for each
α ≥ 0, the inclusions Uα ↪→ Xα+ε and Xα ↪→ Uα+ε induce maps kerφUα → kerφX

α+ε and kerφX
α → kerφUα+ε.

These maps clearly commute with the module maps in the needed way, and hence we have the required ε-
interleaving and can thus appeal to Theorem 2.1.

3.2.2 Main Inference Result

We now suppose that we have a point sample U of a space X, where the Hausdorff distance between the two is no
more than some ε; in this case, we call U an ε-approximation of X. Given two points p, q ∈ U and a fixed radius
r, we set φX = φX(p, q, r), and we wish to determine whether or not φX is an isomorphism. Since we only have
access to the point sample U , we instead compute the diagrams Dgm(kerφU ) and Dgm(cokφU ); we provide
an algorithm for doing this in Section 5. The main Theorem of this section, Theorem 3.2, gives conditions under
which these diagrams enable us to answer the isomorphism question for φX. To state the theorem we first need
some more definitions.

Given any persistence diagram D, which we recall is a multi-set of points in the extended plane, and two
positive real numbers a < b, we let D(a, b) denote the intersection of D with the portion of the extended plane
which lies above y = b and to the left of x = a; note that these points correspond to classes which are born no
later than a and die no earlier than b.

For a fixed choice of p, q, r, we consider the following two persistence modules: {H(BX
p (α), ∂BX

p )} and
{H(BX

pq(α), ∂BX
pq)}. We let σ(p, r) and σ(p, q, r) denote their respective feature sizes and then set ρ(p, q, r) to

their minimum.
We now give the main theorem of this section, which states that we can use U to decide whether or not

φX(p, q, r) is an isomorphism as long as ρ(p, q, r) is large enough relative to the sampling density.
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Figure 8: The point in the X-diagrams lie either along the solid black line or in the darkly shaded region. Adding the lightly shaded regions,
we get the region of possible points in the U -diagrams.

Theorem 3.2 (Topological Inference Theorem) Suppose that we have an ε-sample U from X. Then for each
pair of points p, q ∈ RN such that ρ = ρ(p, q, r) ≥ 3ε, the map φX = φX(p, q, r) is an isomorphism iff

Dgm(kerφU )(ε, 2ε) ∪Dgm(cokφU )(ε, 2ε) = ∅.

PROOF.
To simplify exposition, we will refer to points in Dgm(kerφX)∪Dgm(cokφX) and Dgm(kerφU )∪Dgm(cokφU )

as X-points and U -points, respectively.
Whenever 0 < α < β < 3ε < ρ, the two vertical maps in diagram (2) will by definition both be isomorphisms.

Hence the maps kerφX
α → kerφX

β and cokφX
α → cokφX

β must also be isomorphisms, and so, as α increases from
0 to∞, any element of the (co)kernel of φX must live until at least 3ε, and any (co)kernel class which is born after
0 must in fact be born after 3ε. In other words, any X-point must lie either to the right of the line x = 3ε, or along
the y-axis and above the point (0, 3ε); see Figure 8. Recall that φX is an isomorphism iff kerφX = 0 = cokφX.
Thus φX is an isomorphism iff the black line in Figure 8 contains no X-points.

On the other hand, Theorem 3.1 requires that every U -point must lie within ε of an X-point. That is, all U -
points are contained within the two lightly shaded regions drawn in Figure 8. Since the rightmost such region is
more than ε away from the thick black line, there will be a U -point in the left region iff there is an X-point on
the thick black line. But the U -points within the left region are exactly the members of Dgm(kerφU )(ε, 2ε) ∪
Dgm(cokφU )(ε, 2ε).

Examples. Here we give two examples illustrating the topological inference theorem.
For the first example, suppose we have the space X in the left half of Figure 9, and we take the labelled points

p and q and the radius r as drawn; in this case, one can show that ρ(p, q, r) = 8.5, which here is the distance
between the line segment and the boundary of the intersection of the two r-balls. First we compute the (co)kernel
persistence diagrams for φX, showing the kernel diagram in the right half of Figure 9. Since the y-axis of this
diagram is free of any points (and the same holds for the un-drawn cokernel diagram), p and q have the same local
structure at this radius level.

On the other hand, suppose that we have an ε-sample U of X, with ε = 2.8 < ρ/3, as drawn in the left half
of Figure 10. We can compute the analogous U -diagrams, with the kernel diagram drawn in the right half of the
same figure. Noting that the two rectangles defined by (ε, 2ε) in the two diagrams are indeed empty, and that
the same holds for the cokernel diagrams, we can apply Theorem 3.2 to infer that the points have the same local
structure at radius level r.

For a second example, suppose X is the cross on the left half of Figure 11, with p, q, r as drawn. Then p and
q are locally different at this radius level, as shown by the presence of two points on the y-axis of the kernel In
the left half of Figure 12, we show an ε-sample U of X, with 3ε < ρ(p, q, r). Note that the kernel diagram for φU

does indeed have two points in the relevant rectangle.
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Figure 9: Kernel persistence diagram of two local equivalent points, given X.
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Figure 10: Kernel persistence diagram of two local equivalent points, given U .
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Figure 11: Kernel persistence diagram of two points that are not locally equivalent, given X. A number, i.e., #2, labeling a point in the
persistence diagram indicates its multiplicity.
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Figure 12: Kernel persistence diagram of two points that are not locally equivalent, given U .
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3.3 Geometric Intuition
Theorem 3.2 is stated in terms of a topological parameter, ρ = ρ(p, q, r). We can relate ρ to more geometrically-
flavored quantities. Specifically, we will show that ρ is lower bounded by a parameter derived from local variants
of reach, as well as from parameters related to the gradient of dX. Unfortunately, this lower bound can be quite
loose, zero in certain cases, limiting its practical utility. It does provide a geometric intuition to the topological
constraints on the point cloud.

Recall that the medial axis M of an embedded space X is the subset of the ambient space consisting of all
points which have at least two nearest neighbors on X, and that the reach τ of X is defined by τ = infx∈X dist (x,M).
We fix notation for the following four intersections ofM with different subsets of the ambient space:M(p, r) =
M∩Br(p),M0(p, r) =M∩ ∂Br(p),M(p, q, r) =M∩Br(p) ∩Br(q), andM0(p, q, r) =M∩ ∂(Br(p) ∩
Br(q)), and we define a variant of reach for each such space:

τ(p, r) = inf
x∈X

dist (x,M(p, r))

τ0(p, r) = inf
x∈X

dist (x,M0(p, r))

τ(p, q, r) = inf
x∈X

dist (x,M(p, q, r))

τ0(p, q, r) = inf
x∈X

dist (x,M0(p, q, r)).

Note that all four of these quantities are of course upper bounds on τ itself.
Letting∇X be shorthand for the gradient of dX, we define the following subset of ∂Br(p) :

G(p, r) = {y ∈ ∂Br(p) | ∇X(y) ⊥ ∂Br(p)},

and then set η(p, r) = infx∈X dist (x,G(p, r)). We similarly define G(p, q, r) and η(p, q, r),

G(p, q, r) = {y ∈ ∂(Br(p) ∩Br(q)) | ∇X(y) ⊥ ∂(Br(p) ∩Br(q))},
η(p, q, r) = inf

x∈X
dist (x,G(p, q, r)).

Given the above quantities the following lower bound holds.

Theorem 3.3 (Geometric lower bound) If we define

γ = γ(p, q, r) = min{τ(p, r), τ(p, q, r), η(p, r), η(p, q, r)},

then ρ(p, q, r) ≥ γ(p, q, r).

The proof appears in Appendix D.

4 Probabilistic Inference Theorem
The topological inference of Section 3 states conditions under which the point sample U can be used to infer
stratification properties of the space X. The basic condition is that the Hausdorff distance between the two must be
small. In this section we describe two probabilistic models for generating the point sample U , and we provide an
estimate of how large this point sample should be to infer stratification properties of the space X with a quantified
measure of confidence. More specifically, we provide a local estimate, based on ρ(p, q, r) and ρ(q, p, r), of how
many sample points are needed to infer the local relationship at radius level r between two fixed points p and q;
this same theorem can be used to give a global estimate of the number of points needed for inference between any
pair of points whose ρ-values are above some fixed low threshold.

4.1 Sampling Strategies
We assume X to be compact. Since the stratified space X can contain singularities and maximal strata of varying
dimensions, some care is required in the sampling design. Consider for example a sheet of area one, punctured
by a line of length one. In this case, sampling from a naively constructed uniform measure on this space would
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result in no points being drawn from the line. This same issue arose and was dealt with in [29], although in a
slightly different approach than we will develop.

The first sampling strategy is to remove the problems of singularities and varying dimension by replacing X
by a slightly thickened version X ≡ Xδ . We assume that X is embedded in Rk for some k. This new space is
a smooth manifold with boundary and our point sample is a set of n points drawn identically and independently
from the uniform measure µ(X) on X, U = {x1, ..., .xn}

iid∼ µ(X). This model can be thought of as placing
an appropriate measure on the highest dimensional strata to ensure that lower dimensional strata will be sampled
from. We call this model M1.

The second sampling strategy is to deal with the problem of varying dimensions using a mixture model. In the
example of the sheet and line, a uniform measure would be placed on the sheet, while another uniform measure
would be placed on the line, and a mixture probability is placed on the two measures; for example, each measure
could be drawn with probability 1/2. We now formalize this approach. Consider each (non-empty) i-dimensional
stratum Si = Xi − Xi−1 of X. All strata that are included in the closure of some higher-dimensional strata, in
other words all non-maximal strata, are not considered in the model. A uniform measure is assigned to the closure
of each maximal stratum, µi(Si), this is possible since each such closure is compact. We assume a finite number
of maximal strata K and assign to the closure of each such stratum a probability pi = 1/K. This implies the
following density

f(x) =
1
K

K∑
j=1

νi(X = x),

where νi is the density corresponding to measure µi. The point sample is generated from the following model:
U = {x1, ..., .xn}

iid∼ f(x). We call this model M2.
The first model replaces a stratified space with its thickened version, which enables us to place a uniform

measure on the thickened space. Although this replacement makes it convenient for sampling, it does not sample
directly from the actual space. The second model samples from the actual space, however the sample is not
uniform on X with respect to Lebesgue measure.

4.2 Lower bounds on the sample size of the point cloud
Our first main theorem is the probabilistic analogue of Theorem 3.2. An immediate consequence of this theorem
is that, for two points p, q ∈ U , we can infer with probability at least 1− ξ whether p and q are locally equivalent,
p ∼r q. The confidence level 1− ξ will be a monotonic function of the size of the point sample.

The theorem involves a parameter v(ρ), for each positive ρ, which is based on the volume of the intersection
of ρ-balls with X. First we note that each maximal stratum of X comes with its own notion of volume: in the plane
punctured by a line example, we measure volume in the plane and in the line as area and length, respectively. The
volume vol (Y) of any subspace Y of X is the sum of the volumes of the intersections of Y with each maximal
stratum. For ρ > 0, we define

v(ρ) = inf
x∈X

vol (Bρ/24(x) ∩ X)
vol (X)

(3)

We can then state:

Theorem 4.1 (Local Probabilistic Sampling Theorem) Let U = {x1, x2, ..., xn} be drawn from either model
M1 or M2. Fix a pair of points p, q ∈ RN and a positive radius r, and put ρ = min{ρ(p, q, r), ρ(q, p, r)}. If

n ≥ 1
v(ρ)

(
log

1
v(ρ)

+ log
1
ξ

)
,

then, with probability greater than 1 − ξ we can correctly infer whether or not φX(p, q, r) and φX(q, p, r) are
both isomorphisms.

PROOF.
A finite collection U = {x1, x2, ..., xn} of points in RN is ε-dense with respect to X if X ⊆ Uε; equivalently,

U is an ε-cover of X. Let C(ε) be the ε-covering number of X, the minimum number of sets Bε∩X that cover X.
Let P (ε) be the ε-packing number of X, the maximum number of sets Bε ∩ X that can be packed into X without
overlap.
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We consider a cover of X with balls of radius ρ/12. If there is a sample point in each ρ/12-ball, then U will
be an ε-approximation of X, with ε ≤ 4(ρ/12) = ρ/3. This satisfies the condition of the topological inference
theorem, and therefore we can infer the local structure between p and q.

The following two results from [28] will be useful in computing the number of sample points n needed to
obtain, with confidence, such an ε-approximation.

Lemma 4.1 (Lemma 5.1 in [28]) Let {A1, A2, ..., Al} be a finite collection of measurable sets with probability
measure µ on ∪li=1Ai, such that for all Ai, µ(Ai) > α. Let U = {x1, x2, ..., xn} be drawn iid according to µ. If
n ≥ 1

α (log l + log 1
ξ ), then, with probability 1− ξ, ∀i, U ∩Ai 6= ∅.

Lemma 4.2 (Lemma 5.2 in [28]) Let C(ε) be the covering number of an ε-cover of X and P (ε) be the packing
number of an ε-packing, then

P (2ε) ≤ C(2ε) ≤ P (ε).

Again, we consider a cover of X by balls of radius ρ/12. Let {yi}li=1 ∈ X be the centers of the balls contained
in a minimal sub-cover. Put Ai = Bρ/12(yi) ∩ X. Applying Lemma 4.1, we obtain the estimate

n ≥ 1
α

(
log l + log

1
ξ

)
,

where l is the ρ/12-covering number, and α = mini
vol (Ai)
vol (X) .

Applying Lemma 4.2,

l = C(ρ/12) ≤ P (ρ/24) ≤ vol (X)
vol (Bρ/24 ∩ X)

≤ 1
v(ρ)

.

On the other hand, 1
α ≤

1
v(ρ) by definition, and the result follows.

To extend the above theorem to a more global result, one can pick a positive ρ and radius r, and consider the
set of all pairs of points (p, q) such that ρ ≤ min{ρ(p, q, r), ρ(q, p, r}. Applying Theorem 4.1 uniformly to all
pairs of points will give the minimum number of sample points needed to settle the isomorphism question for all
of the intersection maps between all pairs.

5 Algorithm
The theorems in the last sections give conditions under which a point cloud U , sampled from a stratified space
X, can be used to infer the local equivalences between points on X and its surrounding ambient space. We now
switch gears slightly, and imagine clustering the U -points themselves into strata. The basic strategy is to build a
graph on the point set, with edges coming from positive isomorphism judgements. The connected components
of this graph will then be our proposed strata. We begin by describing this strategy in Section 5.1. Some of its
potential limitations are discussed in Section 5.2, where we also describe a more robust variant based on graph
diffusion.

A crucial subroutine in the clustering algorithm is the computation of the diagrams Dgm(kerφU ) and Dgm(cokφU ),
for φU = φU (p, q, r) between all pairs (p, q) ∈ U × U . The algorithm for this sub-routine is quite complicated,
we describe it in detail in Section 5.3. The correctness proof is even more complicated; we give a proof sketch in
Section 5.4, deferring all major details to Appendix C.

We would like to make clear that we consider the algorithm in this paper a first step and several issues both
statistical and computational can be improved upon.

5.1 Clustering
We imagine that we are given the following input: a point cloud U sampled from some stratified space X, and a
fixed radius r. We make the assumption that dH(U,X) ≤ ε ≤ ρmin

3 , where ρmin is the minimum of ρ(p, q, r) for
all pairs (p, q) ∈ U × U . Later we discuss the consequences when this assumption does not hold and a possible
solution.
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We build a graph where each node in the graph corresponds uniquely to a point from U . Two points p, q ∈ U
(where ||p−q|| ≤ 2r) are connected by an edge iff both φX(p, q, r) and φX(q, p, r) are isomorphisms, equivalently
iff Dgm(kerφU )(ε, 2ε) and Dgm(cokφU )(ε, 2ε) are empty. The connected components of the resulting graph
are our clusters. A more detailed statement of this procedure is giving in pseudo-code, see Algorithm 1. Note that
the connectivity of the graph is encoded by a weight matrix, and our clustering strategy is based on a 0/1-weight
assignment.

Algorithm 1 Strata-Inference(U, r, ε)
for all p, q ∈ U do

if ||p− q|| > 2r then
W (p, q) = 0

else
Compute Dgm(kerφU (p, q, r)) and Dgm(cokφU (p, q, r))
Compute Dgm(kerφU (q, p, r)) and Dgm(cokφU (q, p, r))
if Dgm(kerφU (p, q, r))(ε, 2ε) ∪Dgm(cokφU (p, q, r))(ε, 2ε) 6= ∅ then
W (p, q) = 0

else if Dgm(kerφU (q, p, r))(ε, 2ε) ∪Dgm(cokφU (q, p, r))(ε, 2ε) 6= ∅ then
W (p, q) = 0

else
W (p, q) = 1

end if
end if

end for
Compute connected components based on W .

5.2 Robustness of clustering
Two types of errors in the clustering can occur: false positives where the algorithm connects points that should
not be connected and false negatives where points that should be connected are not. The current algorithm we
state is somewhat brittle with respect to both false positives as well as false negatives. We will suggest a very
simple adaptation of our current algorithm that should be more stable with respect to both false positives and false
negatives.

The false positives are driven by the condition in Theorem 3.2 that ρmin < 3ε, so if the point cloud is not
sampled fine enough we can get incorrect positive isomorphisms and therefore incorrect edges in the graph. If
we use transitive closure to define the connected components this can be very damaging in practice since a false
edge can collapse disjoint components into one large cluster.

The false negatives occur because our point sample U is not fine enough to capture chains of points that
connect pairs in U through isomorphisms, there may be other points in X which if we had sampled then the chain
would be observed. The probability of these events in theory decays exponentially as the sample size increases
and the confidence parameter ξ in Theorem 3.2 controls these errors.

We now state a simple adaptation of the algorithm that will make it more robust. It is natural to think of the
0/1-weight assignment on pairs of points p, q ∈ U as an association matrix W. A classic approach for robust
partitioning is via spectral graph theory [26, 24, 9]. This approach is based an eigen-decomposition of the the
graph Laplacian, L = D −W with the diagonal matrix Dii =

∑
j Wij . The smallest nontrivial eigenvalue

λ1 of W is called the Fiedler constant and estimates of how well the vertex set can be partitioned [17]. The
corresponding eigenvector v1 is used to partition the vertex set. There are strong connections between spectral
clustering and diffusions or random walks on graphs [9].

The problems of spectral clustering and lower dimensional embeddings have been examined from a manifold
learning perspective [1, 2, 18]. The idea central to these analyses is given a point sample from a manifold construct
an appropriate graph Laplacian and use its eigenvectors to embed the point cloud in a lower dimensional space.
A theoretical analysis of this idea involves proving convergence of the graph Laplacian to the Laplace-Beltrami
operator on the manifold and the convergence of the eigenvectors of the graph Laplacian to the eigenvalues of
the Laplace-Beltrami operator. A key quantity in this analysis is the Cheeger constant which is the first nontrivial
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eigenvalue of the Laplace-Beltrami operator [8]. An intriguing question is whether the association matrix we
construct from the point cloud can be related to the Laplacian on high forms.

5.3 Diagram Computation
We now describe the computation of the diagrams Dgm(kerφU ) and Dgm(cokφU ). To do this, we need for each
α ≥ 0 a simplicial analogue of the map

φUα : H(BUp (α), ∂BUp (α))→ H(BUpq(α), ∂BUpq(α)).

To produce this, we first define, for each α ≥ 0, two pairs of simplicial complexes L0(α) ⊆ L(α) and K0(α) ⊆
K(α), and z relative homology map

ψα : H(L(α), L0(α))→ H(K(α),K0(α)

between them. We will then show that

Dgm(kerφU ) = Dgm(kerψ) and Dgm(cokφU ) = Dgm(cokψ).

To compute the diagrams involving ψ, we reduce various boundary matrices; since we follow very closely the
(co)kernel persistence algorithm described in [12], we omit any further details here.

5.3.1 Complexes

To construct the simplicial complexes in our algorithm, we take the nerves of several collections of sets which are
derived from a variety of Voronoi diagrams of different spaces. Here we briefly review these concepts.

Nerves. The nerve N(C) of a finite collection of sets C is defined to be the abstract simplicial complex with
vertices corresponding to the sets in C and with simplices corresponding to all non-empty intersections among
these sets; that is, N(C) = {S ⊆ C |

⋂
S 6= ∅}. Every abstract simplicial complex can be geometrically realized,

and therefore the concept of homotopy type makes sense. Under certain conditions, for example whenever the
sets in C are all closed and convex subsets of Euclidean space ([15], p.59), the nerve of C has the same homotopy
type, and thus the same homology groups, as the union of sets in C.

Voronoi diagram. If U is a finite collection of points in Rk and ui ∈ U , then the Voronoi cell of ui is defined
to be:

Vi = V (ui) = {x ∈ Rk | ||x− ui|| ≤ ||x− uj ||,∀uj ∈ U}.

The set of cells Vi covers the entire space and forms the Voronoi diagram of Rk, denoted as Voi (U |Rk). If we
restrict each Vi restricted to some subsetX ⊆ Rk, then the set of cells Vi∩X forms a restricted Voronoi diagram,
denoted as Voi (U |X). For a simplex σ ∈ U , we set Vσ = ∩ui∈σVi.

The nerve of the restricted Voronoi diagram Voi (U |X) is called the restricted Delaunay triangulation, de-
noted as Del (U |X). It contains the set of simiplices σ for which Vσ ∩X 6= ∅.

Power cells. An important task in our algorithm is the computation of the relative homology groups H(BUp (α), ∂BUp (α))
and H(BUpq(α), ∂BUpq(α)). Now to compute H(Uα), the absolute homology of the thickened point cloud, we
would need only to compute the nerve of the collection of sets Vi ∩ Uα. This is because each such set is convex
and their union obviously equals the space Uα. Such a direct construction will not work in our context, for the
simple reason that the sets Vi ∩ ∂BUp (α) and Vi ∩ ∂BUpq(α) need not be convex.

To get around this problem, we first define P (α), the power cell with respect to Br(p), to be:

P (α) = {x ∈ Rk | ||x− p||2 − r2 ≤ ||x− u||2 − α2,∀u ∈ U}, (4)

and we set P0(α) = Br(p)− intP (α). To define Q(α), the power cell with respect to Br(q), we replace p with
q in (4). Finally, we set Z(α) = P (α) ∩ Q(α), and Z0(α) = (Br(p) ∩ Br(q)) − intZ(α). This is illustrated
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Figure 13: Illustration of intersection power cell Z(α), as the shaded region. The unshaded convex regions are P (α) andQ(α) respectively.

p q

Mq

Lq

p q

Mp

Lp

Figure 14: Illustration of the lune and the moon. The shaded regions are the respective moons. The white regions within solid circles are
the respective lunes.

in Figure 13. We note that P0(α) and Z0(α) are both contained in Uα, as can be seen by manipulating the
inequalities in their definitions.

Replacing ∂BUp (α) with P0(α) and ∂BUpq(α) with Z0(α) has no effect on the relative homology groups in
question, as is implied by the following two lemmas. The first lemma was proven in [3]; a proof of the second
appears in Appendix C.

Lemma 5.1 (Power Cell Lemma) Assume Br(p) − P0(α) 6= 0. The identity on BUp (α) is a homotopy equiva-
lence of (BUp (α), ∂BUp (α)) and (BUp (α), P0(α)), as a map of pairs.

Lemma 5.2 (Intersection Power Cell Lemma) Assume Br(p) ∩ Br(q) − Z0(α) 6= 0. The identity on BUpq(α)
is a homotopy equivalence of (BUpq(α), ∂BUpq(α)) and (BUpq(α), Z0(α)), as a map of pairs.

Lune and moon. It can be shown ([3]) that the sets Vi ∩P0(α) are convex. Unfortunately, it is still possible for
some set Vi ∩ Z0(α) to be non-convex. To fix this, we must further divide the Voronoi cells in a manner we now
describe.

We consider the hyperplane P of points in Rk which are equidistant to p and q; we often refer to this hyperplane
as the bisector. This will divide Rk into two half-spaces; let Pp and Pq denote the half-spaces containing p and
q, respectively.. We also define the p-lune, Lp = Pq ∩ Br(p), and the p-moon, Mp = Pp ∩ Br(p), as illustrated
in Figure 14. The lune and the moon divide each Voronoi cell into two parts, V L

i = Vi ∩ Lp and V M
i = Vi ∩Mp.

These sets are convex, assuming they are non-empty, since they are each the intersection of two convex sets.
Furthermore, we have the following lemma whose simple but technical proof we omit:

Lemma 5.3 (Convexity Lemma) The sets V L
i ∩Z0(α) and V M

i ∩Z0(α) are all convex, assuming they are non-
empty.

Of course the nonempty sets among V L
i ∩ P0(α) and V M

i ∩ P0(α) will also be convex.
To construct the simplicial complexes needed in our algorithm, we define A to be the collection of the

nonempty sets among V L
i ∩ BUp (α) and V M

i ∩ BUp (α), and we define A0 to be the collection of the nonempty

16



u1

u2

p q

Figure 15: Illustration of the simplicial complexes constructed around two points p and q. The underlying Voronoi decomposition of the
space is shown in thin dotted lines. u1 and u2 in U are the points whose restricted Voronoi regions intersect with the lune at non-convex
regions.

sets among V L
i ∩ P0(α) and V M

i ∩ P0(α). Note that ∪A = BUp (α) and ∪A0 = P0(α). Taking the nerve of both
collections, we define the simplicial complexes L(α) = N(A) and L0(α) = N(A0).

Similarly, we define C and C0 to be the collections of the nonempty sets among, respectively, V L
i ∩ BUpq(α)

and V M
i ∩BUpq(α), and V L

i ∩ Z0(α) and V M
i ∩ Z0(α). And we define K(α) = N(C) and K0(α) = N(C0).

An example of the simplicial complexes constructed in R2 for a given U are illustrated in Figure 15. A direct
approach to construct these simplicial complexes runs into difficulties as the corners of the convex sets created by
the bisector can be shared by many sets; we defer the technicalities to Appendix B.

5.3.2 Maps

We now construct simplicial analogues

ψα : H(L(α), L0(α))→ H(K(α),K0(α).

of the maps φUα .
The containments L0(α) ⊆ L(α) and K0(α) ⊆ K(α) are obvious. In order to define ψα, we first need the

following technical lemma:

Lemma 5.4 (Containment Lemma) Assume that a simplex σ is in L0(α). If σ is also in K(α), then σ is in
K0(α), as well.

PROOF. . By definition, σ ∈ L0(α) iff there exists some point x ∈ V σ ∩ P0(α). We must show that the set
V σ ∩ Z0(α) is non-empty. Note that x ∈ P0(α) implies that x ∈ Br(p), while x 6∈ intP (α) implies that
x 6∈ intZ(α). If x ∈ Br(q), then we are done, since Z0(α) = Br(p) ∩Br(q)− intZ(α).

Otherwise, choose some point y ∈ V σ ∩ Uα ∩ Br(p) ∩ Br(q), which is possible since σ ∈ K(α). Since
both x and y belong to the same convex set V σ ∩ Uα ∩ Br(p), there exists a directed line segment γ from x
to y within this set connecting them. We imagine moving along γ and first we suppose that γ intersects Br(q)
before it intersects intQ(α). Let z be the first point of intersection. Then z ∈ Br(p) ∩ Br(q), z /∈ intQ(α).
Therefore z ∈ V σ ∩ Z0(α). On the other hand, we may prove by contradiction that it is impossible for γ to
intersect Q(α) before it intersects Br(q). Let z′ be the first point of such an intersection. Since z′ ∈ Q(α), by
definition ||z′− q||2− r2 ≤ ||z′−ui||2−α2, ∀ui ∈ U . Since z′ ∈ Uα, ∀ui ∈ σ, ||z′−ui||2−α2 ≤ 0. Therefore
||z′ − q||2 − r2 ≤ ||z′ − ui||2 − α2 ≤ 0, ∀ui ∈ σ. Since z′ is outside Br(q), ||z′ − q||2 − r2 > 0. This is a
contradiction.

To define ψα, we first construct a chain map g = gα : C(L(α)) → C(K(α)) as follows. Given a simplex
σ ∈ L(α), we define g(σ) = σ if σ ∈ K(α), and g(σ) = 0 otherwise; we then extend g to a chain map
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Figure 16: From left to right: points sampled from a cross; points sampled from a plane intersecting a line; points sampled from two
intersecting planes. All points are located on the grid.

by linearity. Using the Containment Lemma, we see that g(C(L0(α))) ⊆ C(K0(α)), and thus g descends to a
relative chain map f = fα : C(L(α), L0(α)) → C(K(α),K0(α)). Since f clearly commutes with all boundary
operators, it induces a map on relative homology, and this is our ψ = ψα.

5.4 Correctness
We show that our algorithm is correct by proving the following theorem. A sketch of the proof is given here, with
the details deferred to Appendix C.

Theorem 5.1 (Correctness Theorem) The persistence diagrams involving simplicial complexes are equal to the
persistence diagrams involving the point cloud, that is, Dgm(kerφU ) = Dgm(kerψ) and Dgm(cokφU ) =
Dgm(cokψ).

Proof sketch. To prove Theorem 5.1, we will prove, for each α ≤ β, that the following diagram (as well as a
similar diagram involving cokernels) commutes, with the vertical maps being isomorphisms.

. . .→kerφUα → kerφUβ → . . .

↑∼= ↑∼=
. . .→kerψα → kerψβ → . . . . (5)

Applying Theorem 2.2 then finishes the claim. Dgm(kerφU ) = Dgm(kerψ) and Dgm(cokφU ) = Dgm(cokψ).

6 Simulations
We use a simulation on simple synthetic data with points sampled from grids to illustrate how the algorithm
performs. In these simulations we assume we know ε, and we run our algorithm for 0 ≤ α ≤ 2ε. The data sets
are shown in Figure 16.

We use the following results to demonstrate that the inference on local structure, at least for these very simple
examples, is correct. As shown in Figure 17 top, if two points are locally equivalent, their corresponding ker/cok
persistence diagrams contain the empty quadrant prescribed by our theorems, while in Figure 17 bottom, the
diagrams associated to two non-equivalent points do not contain such empty quadrants. Similar results are shown
for other data sets in Figure 18 and Figure 19.

7 Discussion
As the title of the paper suggests we have presented a first step towards learning stratified spaces. In the discussion
we state some future problems and extensions of interest.

Algorithmic efficiency: The algorithm to compute the (co)kernel diagrams from the thickened point cloud is
based on an adaption of Delaunay triangulation and the power-cell construction. This algorithm should be quite
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Figure 17: Top: both points are from 1-strata. Bottom: one point from 0-strata, one point from 1-strata. Left part shows the locations of
the points. Right part shows the ker/cok persistence diagram of two points respectively, if the diagrams are the same, only one is shown. A
number labeling a point in the persistence diagram indicates its multiplicity.
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Figure 18: Top: one point from 0-strata, one point from 2-strata. Middle: one point from 0-strata, one from 1-strata. Bottom: both points
are from 2-strata. A number labeling a point in the persistence diagram indicates its multiplicity.
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Figure 19: Top: both points from 1-strata. Middle: one point from 1-strata, one from 2-strata. Bottom: both points are from 2-strata. A
number labeling a point in the persistence diagram indicates its multiplicity.
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slow when the dimensionality of the ambient space is high due to the runtime complexity of Delaunay triangu-
lation. One idea to address this bottleneck is to use Rips or Witness complexes [13]; at the moment, we are not
sure how to approach a proof of correctness, due to problems presented by the boundaries of the r-balls. An-
other approach is to use dimension reduction techniques such as principal components analysis (PCA) or random
projection that approximately preserve distance [10] as a preprocessing step. Another idea that may work if the
ambient dimension is not too high is using faster algorithms to construct Delaunay triangulations [4].

Weighting local equivalence: Currently we use a graph with 0/1 weights based on the local equivalence be-
tween two points. Extending this idea to assign fractional weights between points is appealing as it suggests a
more continuous metric for local equivalence. This may also allow for greater robustness when using spectral
methods to assign points to strata.

Curvature moderated tubes: Markus J. Pflaum [30] introduced a concept called curvature moderation that reg-
ulates the behavior of the tangent spaces of a stratum near the boundary. In other words, a stratum is curvature
moderate if it curves near the boundary in a controlled way, this includes the higher derivatives of the curvature.
This is yet another way to describe how strata and their tubular neighborhood are “glued together nicely”. It
would be interesting to connect this concept to our idea of “local reach”.

Noisy data: Our sampling models draw points from the underlying topological space. A more general model
would sample points that are concentrated on the topological space. A version of this type of sampling model is
discussed in [28]. It would be of interest to study how well our approach is suited to such a model.

Adaptive sampling conditions: Throughout this paper we use ε-approximation to characterize the similarity
of the point sample to the topological space. There are other approximation criteria that may be interesting
to study and may provide better sampling estimates. One such criterium is the ε-sample [14] which is adaptive
in that it is proportional to the local feature size. Another criterium of possible interest is the weak feature size [7].

Appendices

A Defining the Map φ

We give a more precise description of the map

φ = φUα : H(BUp (α), ∂BUp (α))→ H(BUpq(α), ∂BUpq(α)).

The definition will be made on the chain level and will be given in terms of singular chains.

A.1 Background
We give here some necessary background as well as some material from algebraic topology and homological
algebra which will be needed in Appendix C. Most of the descriptions are adapted from [22] and [27].

Chain homotopies. For our purposes, a chain complex C is a sequence of Z/2Z- vector spaces Cp, one for each
integer p, connected by boundary homomorphisms ∂Cp : Cp → Cp−1 such that ∂p−1 ◦ ∂p = 0 for all p. The p-th
homology group of such a chain complex is defined by Hp = ker ∂p/im ∂p+1.

A chain map η : C → D between two chain complexes is a sequence of homomorphisms ηp : Cp → Dp

which commute with the boundary homomorphisms: ∂Dp ◦ ηp = ηp−1 ◦ ∂Cp . Every chain map induces a map η∗
between the homology groups of the two complexes.

A chain homotopy F between two chain maps η, η′ : C → D is a sequence of homomorphisms Fp : Cp →
Dp+1 which satisfy the following formula for each p: η− η′ = ∂Dp+1 ◦Fp −Fp−1 ◦ ∂Cp . We say that η and η′ are
chain homotopic and note that they must then induce the same maps on homology: η∗ = η′∗. Finally, η is called
a chain homotopy equivalence if there exists a chain map ρ : D → C such that η ◦ ρ and ρ ◦ η are both chain
homotopic to the identify. In this case η and ρ will both induce homology isomorphisms.
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Singular homology. The standard p-simplex is the subset of Rp+1 given by

∆p = {(t0, ..., tp) ∈ Rp+1|
p∑
i=0

ti = 1,∀i, ti ≥ 0}.

The p+ 1 vertices of ∆p are points {ei} ⊂ Rp+1 where

e0 = (1, 0, 0, ..., 0),
e1 = (0, 1, 0, ..., 0),
...

ep = (0, 0, 0, ..., 1).

A singular p-simplex of a topological space X is a continuous map δ : ∆p → X. By taking formal sums of
singular simplices (using binary coefficients for our purposes) one forms Cp(X), the singular chain group of X
in dimension p. Given points a0, ..., ap in some Euclidean space, which need not be independent, there is a unique
affine map l of ∆p that maps the vertices ei of ∆p to ai. This map defines the linear singular simplex determined
by a0, ..., ap, denoted as l(a0, ..., ap). One then defines a boundary homomorphism ∂p : ∆p(X) → ∆p−1(X)
by:

∂p(δ) = Σpi=0(δ ◦ l(ε0, ..., ε̂i, ..., εp)),

and defines the singular homology groups Hp(X) as above. A continuous map f from X to another topological
space Y induces a chain map f# : Cp(X) → Cp(Y ) given by the formula f#(δ) = f ◦ δ, and thus also a
homology map f∗ : Hp(X)→ Hp(Y ).

The minimal carrier of a singular simplex δ is its image δ(∆p), and the minimal carrier of a singular p-chain∑
δi is the union of the minimal carriers of the δi.

Isomorphism between simplicial and singular homology. The (simplicial) homology groups of a simplicial
complex K and the singular homology groups of its realization |K| are isomorphic. To show an explicit isomor-
phism ([27]), we first define a chain map

η : C(K)→ C(|K|)

as follows [27]: choose a partial ordering of the vertices of K that induces a linear ordering on the vertices of
each simplex of K. Orient the simplices of K by using this ordering, and define

η([v0, ..., vp]) = l(v0, ..., vp),

where v0 < ... < vp in the given ordering. We refer to the linear singular simplex l(v0, ..., vp) as a simplicial
linear singular simplex and it is important in the subsequent sections. The chain map η is in fact a chain equiv-
alence as it has a chain-homotopy inverse, for which a specific formula can be found in [16]. Hence the induced
homology map η∗ provides an isomorphism of simiplicial with singular homology.

A.2 Intersection Map Details
We now give the full and formal definition of the homology map φ = φUα , starting on the chain level. For
compactness, we will use the following shorthand:

X = BUp (α) = Uα ∩Br(p),
B = ∂BUp (α) = Uα ∩ ∂Br(p),
S = BUpq(α) = Uα ∩Br(p) ∩Br(q),
A = Uα ∩Br(p)− int (S),
U = Uα ∩Br(p)− S.
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Note that X − U = S = BUpq(α) and A− U = ∂S = ∂BUpq(α). So to define φ we need only define a chain map
j : C(X,B) → C(X − U,A − U) and then take φ as the map induced on homology. The map j is defined as
the composition j = k ◦ i. The chain map i : C(X,B)→ C(X,A) is induced by inclusion on the second factor,
while the chain map k : C(X,A) → C(X − U,A − U) is an excision, although this latter statement requires
further elaboration.

Excisions. The inclusion map of pairs (X−U,A−U)→ (X,A) is called an excision if it induces a homology
isomorphism; in this case one says that U can be excised. We will make use of the following two results about
excision (see, e.g., [20]):

Theorem A.1 (Excision Theorem) If the closure of U is contained in the interior of A, then U can be excised.

Theorem A.2 (Excision Extension) Suppose V ⊂ U ⊂ A and

(i) V can be excised.

(ii) (X − U,A− U) is a deformation retract of (X − V,A− V ).

Then U can be excised.

In our context, the closure of U need not be contained in the interior of A, and so we must define a suitable
V ⊂ U . Although there are many ways to do this, one direct way is to choose some small enough positive δ.

I = Uα ∩ ∂(Br(p) ∩Br(q)) ∩ cl (U),
Iδ = {x ∈ cl (U)|dI(x) ≤ δ},
V = U − Iδ,

where dI(x) is the distance from x to the set I . It is straightforward to verify that V ⊂ U ⊂ A satisfies the
hypotheses of Theorem A.2. In other words, the inclusion of pairs (X − V,A− V )→ (X,A) is an excision; its
induced chain map has a chain-homotopy inverse, which we denote as s : C(X,A)→ C(X−V,A−V ). Finally,
we define k = r#◦s, where r# is the chain map induced by the retraction r : (X−V,A−V )→ (X−U,A−U).

Subdivision. In order to fully carry out the analysis in Appendix B, we must first decompose the maps i and
k through subdivision. Given a topological space X and a collection A of subsets of X whose interiors form an
open cover of X , a singular simplex of X is said to be A-small if its image set is entirely contained in a single
element of A. For each dimension p, the chain group CAp (X) is the subgroup of Cp(X) spanned by the A-small
singular p-simplices. These groups form a chain complex, with homology HA(X). Of course, any singular
simplex on X can be subdivided into a sum of A-small simplices, so it is plausible, and in fact true ([22]), that
the inclusion CA(X)→ C(X) is a chain homotopy equivalence.

Returning to our context, we setA = {X−V,A} and denote by l the chain inclusion CA(X,A)→ C(X,A).
We also let ρ : C(X,B) → CA(X,B) be the chain homotopy inverse of the chain inclusion CA(X,B) →
C(X,B), and let t : CA(X,B) → CA(X,A) be the chain map induced by inclusion on the second factor.
Finally we note that i = l ◦ t ◦ ρ.

We also decompose k as k = r# ◦ η ◦ ρ, where η is the chain homotopy inverse of the chain map C(X −
V,A− V )→ C(X,A)→ CA(X,A).

Summary. To summarize, our map φ = j∗, where j is the chain map defined by the following sequence of
chain maps

j = k ◦ i = (r# ◦ η ◦ ρ) ◦ (l ◦ t ◦ ρ).
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Following the same framework as above, we also define a chain map j′ and its induced homology map φ′ = j′∗ :
H(BUp (α), P0(α))→ H(BUpq(α), Z0(α)) simply by adopting the notation:

X = BUp (α) = Uα ∩Br(p),
B′ = P0(α),

S = BUpq(α) = Uα ∩Br(p) ∩Br(q),
A′ = Uα ∩Br(p)− S + Z0(α),
U = Uα ∩Br(p)− S,
I = Uα ∩ ∂(Br(p) ∩Br(q)) ∩ cl (U),
Iδ = {x ∈ cl (U)|dI(x) ≤ δ},
V = U − Iδ,

defining our open cover to be A′ = {X − V,A′}, and otherwise proceeding exactly as before.
Similarly, we create a chain map f ′ which induces ψ′ = f ′∗ : H(|SdL|, |SdL0|)→ H(|SdK|, |SdK0|), using

the notation

X
′′

= |SdL|,

B
′′

= |SdL0|,

A
′′

= (|SdL| − |SdK|) ∪ |SdK0|,

U
′′

= |SdL| − int |SdK|,
I = |SdK| ∩ cl (U ′),
Iδ = {x ∈ cl (U ′)|dI(x) ≤ δ},

V
′′

= U ′ − Iδ,

with A′′ = {A′′, X ′′ − V ′′}.

B Algorithm Details
We give the details in constructing the simplicial complexes described in our algorithm. The various simplicial
complexes, L, L0, K and K0, are the nerves of collections of convex sets. Here we go through the construction
of L; construction of the others is similar.

Implicit Perturbations. A direct approach to constructing L, the nerve of the collectionB, runs into difficulties
as the corners of the convex sets created by the bisector P can be shared by many sets. To cope with this difficulty,
we perturb these convex sets ever so slightly so that they meet in general position. Note that this is not done by
perturbing the bisector; rather, it is done by decomposing the bisector into pieces.

We are interested in the restricted Voronoi diagram of the sublevel sets inside the ball Br(p), which we denote
as V = Voi (U |Uα ∩Br(p)). The restricted Voronoi cell of ui is defined as V (ui|Uα∩Br(p)) = V (ui)∩Br(p).

Given V , we create three sets of points. Let Tpq be the set of points ui ∈ U whose restricted Voronoi cells
have non-trivial intersection with the bisector: V (ui|Uα ∩ Br(p)) ∩ P 6= ∅. We impose an ordering of points in
Tpq , w.l.o.g., let the ordered set be Tpq = {x1, x2, ..., xm}. Tp is the set of points ui ∈ U which are not in Tpq
and are closer to p than they are to q. Similarly, Tq is the set of points ui ∈ U , which are not in Tpq and are closer
to q.

By construction, the bisector P intersects the restricted Voronoi cells of the points in Tpq . We denote these
corresponding intersections as {P1,P2, ...,Pm}. We perturb each Pi slightly such that no two pieces are collinear.
Note that Pi is perpendicular to the direction q − p. One possible choice of perturbation would move each Pi
within the restricted Voronoi cell along the direction q − p for iε distance, where ε is sufficiently small. An
example in R2 is shown in Figure 20.

Given such a perturbation, we let Ã be the resulting collection of perturbed convex sets, and we compute L̃ =
Nerve (Ã) instead of L = Nerve (A). By the properties of nerve construction, Nerve (Ã) '

⋃
Ã, Nerve (A) '⋃

A. Since
⋃
Ã =

⋃
A, then we have L̃ ' L. We now describe how we construct L̃.
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Figure 20: An example of the implicit perturbation. Dotted lines are the bisectors. A simplex [y1, y2, y3] ∈ L′ is shown in the left. The
simplices in L and in L̃ are shown in the middle and right, respectively.

Case Analysis. Let L′ be the restricted Delaunay triangulation, L′ = Del (U |Uα ∩Br(p)). We read the sim-
plicies from Ã without explicit perturbations. Specifically, we follow a set of rules, described below, to construct
L̃ from L′.

The bisector divides the restricted Voronoi cell of a point x ∈ Tpq into two convex sets. Let xp represent the
perturbed convex set closer to p in the nerve construction, and let xq represent the other set. Let σ be a simplex
in L′ with k vertices, that is, σ = [y1, y2, ..., yk]. There are seven cases regarding the membership of the points
{y1, y2, ..., yk}.

1. All yi ∈ σ belong to Tp. We add the simplex [y1, y2, ..., yk] to L̃.

2. All yi ∈ σ belong to Tq . Same as case 1. We add the simplex [y1, y2, ..., yk] to L̃.

3. All yi ∈ σ belong to Tpq . Suppose {y1, y2, ..., yk} are sorted according to the ordering in Tpq . We add the
following simplicies and their faces to L̃:

[yp1 , ..., y
p
m, y

q
1]

[yp2 , ..., y
p
m, y

q
1, y

q
2]

[yp3 , ..., y
p
m, y

q
1, y

q
2, y

q
3]

...

[ypm, y
q
1, y

q
2, ..., y

q
m]

4. Some yi are in Tp, the rest are in Tpq . Suppose {yi1 , ..., yin} ⊆ Tp and {yj1 , ..., yjl} ⊆ Tpq . We add
[yi1 , ..., yin , y

p
j1
, ..., ypjl ] to L̃.

5. Some yi are in Tq , the rest are in Tpq . Similar to case 4, suppose {yi1 , ..., yin} ⊆ Tq and {yj1 , ..., yjl} ⊆ Tpq .
We add [yi1 , ..., yin , y

q
j1
, ..., yqjl ] to L̃.

6. Some yi are in Tp, the rest are in Tq . We show that Case 6 is impossible. Choose yi ∈ Tp and yj ∈ Tq
such that yi and yj are connected by an edge. Since yi and yj are on the opposite sides of P, this edge
must intersect P at some point z. Then their corresponding restricted Voronoi cells, V (yi|Uα ∩Br(p)) and
V (yj |Uα ∩Br(p)), must meet at a Voronoi face, which contains the point z. Suppose that the Voronoi face
is in general position, that is, it is not parallel to P. Then P intersects the Voronoi face, by definition, yi and
yj must belong to Tpq . This is a contradiction.

7. Some yi are in Tp, some are in Tq , and the rest are in Tpq . We show that case 7 is impossible using the same
proof in case 6.

A simple example is shown in Figure 20. Given [y1, y2, y3] ∈ L′, simplex [y1, y
p
2 , y

p
3 ] is added to L̃ according

to case 4. Given [y2, y3] ∈ L, simplices [yp2 , y
p
3 , y

q
2], [yp3 , y

q
2, y

q
3] and their faces are added to L̃ according to case

3.
In summary, we construct L̃ by iterating through all simplices σ in L′, adding new simplicies to L̃ constructed

from σ following the above cases.
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Figure 21: Two adjacent commuting cubes.

C Algorithmic Correctness
We prove the correctness of the algorithm described in Section 5.3 by proving Theorem 5.1. More precisely, we
will prove that diagram 5 commutes, with the vertical arrows being isomorphisms, for some arbitrary but fixed
choice of α < β; we will omit the very similar argument about cokernels. The proof is unfortunately lengthy,
and at times a bit technical, for in order to prove our statements about diagram 5, we must also prove similar
statements about several other interlocking diagrams. For sanity and clarity of presentation, we first exhibit all
the diagrams at once in the form of the following double-cube (Figure 21).

C.1 Bottom Face
The bottom face of the double-cube has been detached and drawn in diagram 6. The horizontal maps in the upper
square are induced by inclusion of pairs, and so the upper square certainly commutes.

H(BUp (α), ∂BUp (α))
jβα−→ H(BUp (β), ∂BUp (β))

↓ iα ↓ iβ

H(BUp (α), P0(α))
jβα−→ H(BUp (β), P0(β))

↑ hα ↑ hβ

H(L(α), L0(α))
gβα−→ H(L(β), L0(β)). (6)

We have already shown that the two vertical maps in the upper square are isomorphisms; this was the content
of the Power Cell Lemma in Section 5.3. To show that the vertical maps in the lower square are isomorphisms
requires a bit more work. We make use of the following lemma, proven in [3].

Lemma C.1 (General Nerve Subdivision Lemma (GNSL)) Let C be the collection of maximal cells of a CW
complex, each a convex set in Rk. Define f : |SdN | → ∪C by piecewise linear interpolation of its values at the
vertices. If f(σ̂) is contained in the intersection of the cells that correspond to the vertices of σ, for each simplex
σ ∈ N , then f is a homotopy equivalence.
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The vertical isomorphisms in the bottom square then follow from this next lemma, where we may of course
replace α with β if we wish.

Lemma C.2 (Nerve Subdivision Lemma) Define h = hα : |SdL(α)| → BUp (α) on the vertices σ̂ of Sd Ł(α)
by the formula

hα(σ̂) = arg min
x∈V σ∩Uα∩Br(p)

d2
U (x)− d2

p(x),

and extend it by linear interpolation. Then hα is a homotopy equivalence of pairs from (|SdL(α)|, |SdL0(α)|)
to (BUp (α), P0(α)).

PROOF. By construction, h(σ̂) is contained in the intersection of the cells that correspond to the vertices of σ.
By the GNSL then, h is a homotopy equivalence.

Now we need to prove that the restriction of h to SdL0(α) is also a homotopy equivalence. Let σ ∈ L0(α) and
put h(σ̂) = z. For purposes of contradiction, suppose z /∈ P0(α). This means that z ∈ intP (α), by definition,
and hence dU (z)2 − dp(z)2 > α2 − r2.

Now choose some z′ ∈ V σ∩P0, which must exist since σ ∈ L0(α). Then by definition we have dp(z′)2−r2 ≥
dU (z′)2−α2, or dU (z′)2− dp(z′)2 ≤ α2− r2. Combining the above inequalities, we have dU (z′)2− dp(z′)2 ≤
α2− r2 < dU (z)2− dp(z)2, which contradicts the assumption that h(σ̂) = z. We conclude that z ∈ Vσ ∩P0(α).
Applying the GNSL once more finishes the proof.

To show that the lower square commutes, we put e = jβα ◦ hα and e′ = hβ ◦ gβα, and we consider the map
H : |L(α)| × [0, 1] → Uα ∩ Br(p) defined by H(x, t) = hαt ◦ gαtα (x), where αt = (1 − t)α + tβ. Since the
maps g and j are inclusions and the maps h vary continuously with α, H is a homotopy between e and e′. This
implies that the induced homomorphisms between the corresponding homology groups are the same, e∗ = e′∗.

C.2 Top Face
We detach the top face of Figure 21, drawing it in diagram 7. As before, we prove that all vertical maps are
isomorphisms. The commutativity of the two smaller squares follows from nearly identical arguments to the ones
used for the bottom face.

H(BUpq(α), ∂BUpq(α))→ H(BUpq(β), ∂BUpq(β))

↓ i′α ↓ i′β
H(BUpq(α), Z0(α))→ H(BUpq(β), Z0(β))

↑ h′α ↑ h′β
H(K(α),K0(α))→ H(K(β),K0(β)) (7)

The Intersection Power Cell Lemma tells us that the vertical maps in the top square are isomorphisms. As
promised, we give the proof of this lemma here, repeating the statement for completeness.

Lemma C.3 (Intersection Power Cell Lemma) AssumeBr(p)∩Br(q)−Z0(α) 6= 0. The identity i′ onBUpq(α)
is a homotopy equivalence of pairs between (BUpq(α), ∂BUpq(α)) and (BUpq(α), Z0(α)).

PROOF. It suffices to show that the restriction of the identity, i′ = i′α : ∂Upq(α) → Z0(α), is a homotopy
equivalence. To do this, we first define a retraction j : Z0(α) → ∂Upq(α) as follows. Fix a point y ∈ intZ(α),
recalling that this set is nonempty by assumption. For each point x ∈ Z0(α), we consider the unique ray starting
at y and passing through x, and we let x′ = j(x) denote its intersection with ∂(Br(p) ∩ Br(q)). Note that
x′ ∈ Z(α) ⊆ U(α), and so j is certainly well-defined. That j is a retraction, meaning j ◦ i′ is the identity on
∂BUpq(α), is obvious. On the other hand, the map

λ : Z0(α)× [0, 1]× Z0(α)

defined by λ(x, t) = (1− t)x+ tx′ is a homotopy between i′ ◦ j and the identity map on Z0(α), and so the claim
follows.

To prove that the vertical maps in the lower square are isomorphisms, we again make use of the GNSL.
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Lemma C.4 (Intersection Nerve Subdivision Lemma (INSL)) Define h′ = h′α : |SdK(α)| → BUpq(α) by
setting

h′α(σ̂) = arg min
x∈V σ∩Uα∩Br(p)∩Br(q)

min{d2
U (x)− d2

p(x), d2
U (x)− d2

q(x)},

where σ̂ is the barycentre of σ ∈ Kα, and then extending by linear interpoloation. Then h′ is a homotopy
equivalence of pairs between (|SdK(α)|, |SdK0(α)|) and (BUpq(α), Z0(α)).

PROOF. The proof is quite similar to that of the NSL. By construction, h′(σ̂) is contained in the intersection of
the cells that correspond to the vertices of σ, and so we need only prove that the restriction of h′ to the barycentric
subdivision of K0(α) is also a homotopy equivalence. Let σ ∈ K0(α) and put h′(σ̂) = z.

Suppose z /∈ Z0(α), and thus z ∈ intZ(α). By definition then, dp(z)2−r2 < dU (z)2−α2 and dq(z)2−r2 <
dU (z)2 − α2. In other words, min{d2

U (x)− d2
p(x), d2

U (x)− d2
q(x)} > α2 − r2.

Choose some point z′ ∈ Vσ ∩ Z0(α). Then one of the following inequalities must hold: dp(z′)2 − r2 ≥
dU (z′)2 − α2, or dq(z′)2 − r2 ≥ dU (z′)2 − α2. That is, min{d2

U (z′)− d2
p(z
′), d2

U (z′)− d2
q(z
′)} ≤ α2 − r2.

Therefore, combining both inequalities, min{d2
U (z′)− d2

p(z
′), d2

U (z′)− d2
q(z
′)} ≤ α2 − r2 < min{d2

U (z)−
d2
p(z), d

2
U (z)− d2

q(z)}, which contradicts the definition of z.

C.3 Left and Right Faces
We now come to the final and most complicated part of the correctness proof, involving the left face (diagram
8) of the double-cube; of course, everything we prove here will also hold for the right face. We have already
established that all vertical maps are isomorphisms, and now must show that both squares commute.

H(BUp , ∂B
U
p )

φ−→ H(BUpq, ∂B
U
pq)

↓ i∗ ↓ i′∗

H(BUp , P0)
φ′−→ H(BUpq, Z0)

↑ h∗ ↑ h′∗

H(L,L0)
ψ−→ H(K,K0). (8)

The top square will in fact commute even on the chain level. The bottom square is a little more complicated, and
we start by addressing this first.

In diagram 9, this bottom square has been expanded into two smaller squares of chain groups connected by
chain maps. We show that the lower of these squares commutes on the chain level, and that the two choices of
path across the upper square are connected by a chain homotopy.

C(BUp , P0)
j′−→ C(BUpq, Z0)

↑ h# ↑ h′#

C(|SdL|, |SdL0|)
f ′−→ C(|SdK|, |SdK0|).

↑ η ↑ η

C(SdL,SdL0)
f−→ C(SdK, SdK0). (9)

C.3.1 Map Details

First we need to discuss two of the horizontal chain maps from diagram 9 in more explicit detail.

Upper map. We analyze the effect of j′ on an arbitrary linear singular simplex ω : ∆p → BUp , where ω =
l(a0, ..., ap) for some points ai in Euclidean space. The analysis can be broken up into three main cases:
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Figure 22: Left: map j′ for a linear singular simplex l(a0, a1, a2). Right: map f ′ for a simplicial linear singular simplex l(v0, v1, v2).

BU
q

X − V

A′

Figure 23: Map j′ for a linear singular simplex that requires barycentric subdivision. In this illustrated example, all four shaded regions are
the images of the four singular simplexes in the first barycentric subdivision which are A′-small and have their images in X − V . Their
formal sum gives a singular chain in X − V . Their retraction result in a singular chain in BUpq .

(A.1) ω(∆p) ⊆ BUq : Then j′ maps ω through unchanged, meaning:

[ω : ∆p → BUp ]
j′7−→ [ω : ∆p → BUpq].

From now on we simplify notation by omitting the domain and range of the singular simplex, writing

instead: ω
j′7−→ ω.

(A.2) ω(∆p) ∩BUq = ∅: Then ω
j′7−→ 0.

(A.3) ω(∆p) * BUq and ω(∆p) ∩BUq 6= ∅: here we have two sub-cases:
(A.3.a) ω is A′-small: This implies that ω(∆p) ⊆ X − V . Map j′ can be interpreted as a retraction. That is,

letting T = ω(∆p), S = ω(∆p) ∩ BUq and R = ω(∆p) ∩ ∂BUq , we define r : T → S by: for x ∈ S,

r(x) = x; for x ∈ T − S, r(x) = x′, where x′ ∈ R, as shown in the left of Figure 22. Then ω
j′7−→ τ,

where τ : ∆p → BUpq is defined by: for ε ∈ ∆p where ω(ε) ∈ S, τ(ε) = ω(ε); otherwise for ε ∈ ∆p

where ω(ε) /∈ S, τ(ε) = r ◦ ω(ε).
(A.3.b) ω is not A′-small: We barycentrically subdivide ω enough times m until sdmω is a A′-small singular

chain. Then each A′-small singular simplex in sdmω that has its image in X − V follows the pattern

of (A.3.a), resulting in a singular simplex τi : ∆p → BUpq . In the end we have, ω
j′7−→ cτ , where cτ is

the singular chain, cτ =
∑
τi. This is shown in Figure 23.

Middle map. We now describe the action of f ′ on an arbitrary simplicial linear singular simplex. Let δ : ∆p →
|SdL| be such a simplex with δ = η(σ) = l(v0, ..., vp), for some simplex σ = [v0, ..., vp] ∈ SdK. As above, we
have three cases to consider::

(B.1) δ(∆p) ⊆ |SdK|: then δ
f ′7−→ δ.

(B.2) δ(∆p) ∩ |SdK| = ∅: δ f ′7−→ 0.
(B.3) δ(∆p) * |SdK| and δ(∆p) ∩ |SdK| 6= ∅: From Lemma C.5 below, we know that (δ(∆p) ∩ |SdK|) ⊆

|SdK0|, and so δ
f ′7−→ 0.

Lemma C.5 Given a simplex σ ∈ L, if σ /∈ K and there exists τ < σ such that τ ∈ K, then τ ∈ K0.

PROOF. Suppose there exists ω < τ such that ω ∈ K − K0. This implies that V ω is completely contained in
BUpq . Since V σ is the intersection of V ω with the partial Voronoi cells of vertices in σ that are not in ω, then V σ

should be completely contained in BUpq . This means that σ is in K, which leads to a contradiction.
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C.3.2 Lower Square

As promised, we now show that the lower square in diagram 9 commutes. Choose an arbitrary σ = [v0, ..., vp] ∈
SdL, where each vi is a barycenter of some simplex σ′ in L; as always, we assume that that the vertices are
ordered by increasing dimension of their defining simplices. We have two cases:

(C.1) σ ∈ SdK: by definition, η(σ) = l(v0, ..., vp) has its image in |SdK|, and f is the identify map, that is,

σ
f7−→ σ

η7−→ η(σ). Meanwhile, by case (B.1), σ
η7−→ η(σ)

f ′7−→ η(σ). Therefore (η ◦ f)(σ) = f ′ ◦ η(σ).

(C.2) σ /∈ SdK : then σ
f7−→ 0

η7−→ 0. On the other had, since σ /∈ SdK, we know that the image of δ = η(σ) =
l(v0, ..., vp) cannot be entirely contained within |SdK|. There are then two sub-cases to consider:

(C.2.a) δ(∆p) ∩ |SdK| = ∅ : this is case (B.2). We have σ
η7−→ δ

f ′7−→ 0.

(C.2.b) δ(∆p) ∩ |SdK| ⊆ |SdK0| : this is case (B.3). We have σ
η7−→ δ

f ′7−→ 0.

C.3.3 Upper Square

Finally, we show that the upper square in diagram 9 commutes up to chain homotopy; that is, we will construct
a chain homotopy D between the two chain maps e = j′ ◦ h# and e′ = h′# ◦ f ′. This will of course imply that
e∗ = e′∗; in other words, that the induced homology diagram commutes. For clarity, we zoom in on diagram 9
and draw the relevant portion below as diagram 10.

C(BUp , P0)
j′−→ C(BUpq, Z0)

↑ h# ↑ h′#

C(|SdL|, |SdL0|)
f ′−→ C(|SdK|, |SdK0|). (10)

For notational ease ,we set X = |SdL| and Y = BUpq . To construct D, we will define for each p a chain map
Fp : Cp(X × I) → Cp(Y ), and then we will set Dp = Fp+1 ◦Gp, where Gp : Cp(X × I) → Cp+1(X × I) is
given by Lemma C.6 below.

Construction of F. Let π : X × I → X be projection on the first factor, and fix an arbitrary simplicial linear
singular simplex κ : ∆p → X × I . Then π#(κ) = δ = l(σ̂0, ..., σ̂p), for some simplex σ = [σ̂0, ..., σ̂p] in SdL.
We define F in stages, based on properties of δ, as follows.

(D.1) δ(∆p) ⊆ |SdK|: following the e′-path and case (B.1), we have δ
f ′7−→ δ

h′#7−−→ τ ′. On the other hand,

following the e-path results in δ
h#7−−→ ω. We now have three sub-cases, based on varying properties of ω:

(D.1.a) ω(∆p) ⊆ BUq : following the e-path and case (A.1). we have, δ
h#7−−→ ω

j′7−→ τ, where τ = ω except for
differing range. We then can define F (κ) = ι, where ι : ∆p → Y is given by: for every ε ∈ ∆p, where
κ(ε) = (x, t) ∈ X × I , ι(ε) = (1− t)τ(ε) + tτ ′(ε). This formula is illustrated in Figure 24.

(D.1.b) ω(∆p) ∩BUq = ∅: This is case (A.2). We branch further as follows:

(i) δ(∆p) ⊆ |SdK0|: Following the e′-path, δ
f ′7−→ 0

h′#7−−→ 0. Similarly, following the e-path, δ
h#7−−→

ω
j′7−→ 0. We define F (κ) = 0.

(ii) δ(∆p) * |SdK0|: this is not possible. Suppose it were. This implies that there exists at least one
vertex σ̂i of σ such that V σi ∩ BUpq 6= ∅ and V σi ∩ Z0 = ∅. This means that V σi is completely
contained in Br(q). Therefore h(σ̂i) is contained in Br(q), which contradicts our assumption.

(D.1.c) ω(∆p) * BUq and ω(∆p) ∩BUq 6= ∅: we must consider two further sub-cases.
(i) ω is A′-small: this is case (A.3.a), and we define F (κ) similarly to case (D.1.a).

(ii) ω is notA′-small: this is case (A.3.b). Then δ
h#7−−→ ω

j′7−→ cτ , where cτ =
∑
τi for some collection

of τi : ∆p → BUpq . We now define F (κ) = cι, where cι =
∑
ιi and each singular simplex

ιi : ∆p → Y . is defined as follows. Let m be the smallest integer such that sdmω is A′-small. For
each singular simplex τi in cτ , there exists a singular simplex ωi in sdmω such that j′(ωi) = τi. For
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Figure 24: Case (D.1.a): illustration of F .

∆p
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δ
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(x, t)

(x, 1)
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ιi(∆p)

τi(∆p)

Figure 25: Case (D.1.c): illustration of F . Left: the dark shaded region is the minimal carrier of δi and κi. Right: the shaded regions from
top to bottom are the minimal carriers of τ ′, cι and cτ respectively; the dark shaded regions from top to bottom are the minimal carriers of
τ ′i , ιi and τi, respectively. For simplicity, we illustrate the minimal carrier of the singular chain cτ as the union of the minimal carriers of its
simplexes before their retraction.

each such ωi, there exists a singular simplex δi in sdmδ such that h#(δi) = ωi. In other words, for

each τi in cτ , there exist δi in sdmδ, such that following the e-path, δi
h#7−−→ ωi

j′7−→ τi. Meanwhile,

for each such δi, following the e′-path gives δi
f ′7−→ δi

h′#7−−→ τ ′i .
On the other hand, for each such δi, there exists a corresponding κi in sdmκ, such that δi = π(κi).
We now define ιi for each such κi. For all ε ∈ ∆p where κi(ε) = (x, t) ∈ X × I , ιi(ε) =
(1− t)τi(ε) + tτ ′i(ε). This is illustrated in Figure 25.

(D.2) δ(∆p) * |SdK| : we again have two sub-cases:

(D.2.a) δ(∆p)∩ |SdK| = ∅ : following the e′-path and case (B.2), δ
f ′7−→ 0

h′#7−−→ 0. Since δ(∆p)∩ |SdK| = ∅,
this implies that its corresponding σ /∈ SdK. That is, for all σ̂i, V σi ∩BUpq = ∅, therefore all h(σ̂i) lie
outside of Br(q). Let ω = h#(δ) = h ◦ δ. This means ω has its image outside of BUq . Then following

the e-path, δ
h#7−−→ ω

j′7−→ 0. We define F (κ) = 0.

(D.2.b) (δ(∆p) ∩ |SdK|) ⊆ |SdK0| : following the e′-path and case (B.3), we have, σ
f ′7−→ 0

h′#7−−→ 0. On the

other hand, let ω = h#(δ) = h◦ δ. Then ω(∆p) ⊆ P0 and so following the e-path give σ
h#7−−→ ω

j′7−→ 0.
We define F (κ) = 0.

Construction of D. To define our chain homotopy D, we first need the following lemma:
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ĵ
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Figure 26: Illustration of G.

Lemma C.6 ([27], page 171) There exists for each space X and each non-negative integer p, a homomorphism
Gp : Cp(X) → Cp+1(X × I), having the following property: if δ : ∆p → X is a singular simplex, then
∂Gδ +G∂δ = j#(δ) + i#(δ), where the map i : X → X × I carries x to (x, 0), and the map j : X → X × I
carries x to (x, 1).

This homomorphism is illustrated intuitively in Figure 26, where δ× Id carries a singular p+ 1 chain that fills up
the entire prism ∆p× I to a singular chain on X× I , and the maps î, ĵ : ∆p → ∆p× I carry each x to (x, 0) and
(x, 1) respectively. Then, as promised, we set Dp = Fp+1 ◦Gp. To show that D is a chain homotopy between e
and e′, we calculate

∂D = ∂(FG)
= F∂G

= F (j# + i# +G∂)
= Fj# + Fi# + FG∂

= Fj# + Fi# +D∂

Hence we need only show that Fj# = e′ and Fi# = e to complete the argument. In the case when F (κ) is
defined to be 0, the corresponding e(δ) and e′(δ) are also 0, so this is no problem. In the case when F (κ) is not
defined to be 0, as shown in Figure 24 and Figure 25, Fj#(δ) = e′(δ), and Fi#(δ) = e(δ). This concludes
the proof that the upper square in diagram 9 commutes up to chain homotopy, and thus that the bottom square of
diagram 8 commutes.

C.3.4 Top Square of Diagram 8

As promised above, we now prove that the top square of diagram 8 commutes, which will complete the proof that
the left face of Figure 21 commutes. In fact, the top square commutes on the chain level, which we draw directly
below.

C(BUp , ∂B
U
p )

j−→ C(BUpq, ∂B
U
pq)

↓ i# ↓ i′#

C(BUp , P0)
j′−→ C(BUpq, Z0)

Setting e = j′ ◦ i# and e′ = i′# ◦ j, we show, once again via an exhaustive case analysis, that e = e′.
First we need to understand the map j for a linear singular simplex. The interpretation of j is almost the same

as that of j′ (case (A)). More specifically, we let ω : ∆p → BUp be an arbitrary linear singular simplex. There are
three cases:

(E.1) ω(∆p) ⊆ BUq : then ω
j7−→ ω.

(E.2) ω(∆p) ∩BUq = ∅ : then ω
j7−→ 0.

(E.3) ω(∆p) * BUq and ω(∆p) ∩BUq 6= ∅ : We have two sub-cases:

(E.3.a) ω is A-small: then ω
j7−→ γ, where γ : ∆p → BUpq is defined via the retraction-type arguments above.

(E.3.b) ω is not A-small: then ω
j′7−→ cγ , where cγ =

∑
γi, with each γi : ∆p → BUpq described by the

subdivision and retraction arguments we have already given.
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To complete the proof, we fix an arbitrary singular simplex δ : ∆p → BUp , and again argue by cases.

(F.1) δ(∆p) ⊆ BUq : exploiting the analysis above, we note that following the e′-path results in δ
j7−→ δ

i′#7−→ δ,

while following the e-path gives δ
i#7−→ δ

j′7−→ δ, as needed.

(F.2) δ(∆p) ∩BUq = ∅ : here both paths result in 0.

(F.3) δ(∆p) * BUq and δ(∆p) ∩BUq 6= ∅ : here we must analyze two sub-cases:

(F.3.a) δ is A-small: this implies that δ(∆p) ⊆ X − V . Following the e-path gives. δ
j7−→ γ

i′#7−→ γ. On the
other hand, δ is also A′-small, since A and A′ share the element X − V , and hence the e′ path

δ
j7−→ δ

i′#7−→ τ.

But really the fact that X − V is part of A and A′ means that τ and γ follow the same retraction, and
thus γ = τ .

(F.3.b) δ is not A-small: the analysis here is the same as the last case, with some words about subdivision
added.

C.4 Finale
We are now ready to finish the proof of Theorem 5.1, which boils down to verifying that diagram 5 commutes,
with the vertical maps being isomorphisms. That is,

. . .→kerφUα → kerφUβ → . . .

↑∼= ↑∼=
. . .→kerψα → kerψβ → . . . .

But this is now just easy diagram-chasing. Commutativity of diagram 5 follows directly from the commutativity
of the bottom face of the double-cube in Figure 21, and the leftmost (rightmost) vertical isomorphism derives
from our statements about the left (right) face of the double-cube. The commutativity of the top face implies that
the cokernel analogue to diagram 5 commutes, after a little more algebra which we omit.

D Proof of Theorem 3.3
In this Appendix, we give a proof for Theorem 3.3. First we need a technical lemma involving some simple
algebraic topology.

D.1 Absolute Homology Modules
Recall from before that σ(p, r) is the feature size of the relative homology persistence module {H(BX

p , ∂B
X
p )}. On

the other hand, the same thickening process also defines two absolute homology persistence modules, {H(BX
p )}

and {H(∂BX
p )}. We let σi(p, r) and σb(p, r) denote the feature sizes of these modules. Similarly, we define

σi(p, q, r) and σb(p, q, r), respectively, to be the feature sizes of the absolute homology persistence modules
{H(BX

pq)} and {H(∂BX
pq)}.

Theorem D.1 (Relative/Absolute Lemma) The feature size of each relative module is at least the minimum of
those of its two associated absolute modules:

σ(p, r) ≥ min{σi(p, r), σb(p, r)},
σ(p, q, r) ≥ min{σi(p, q, r), σb(p, q, r)}.
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PROOF. We prove the first equality; the second can then be proven with only minor notational adjustment. For any
two non-negative reals α < β, and for each homological dimension i ≥ 0, consider the following commutative
diagram:

Hi(∂BX
p (α))→ Hi(BX

p (α))→ Hi(BX
p (α), ∂BX

p (α))→ Hi−1(∂BX
p (α))→ Hi−1(BX

p (α))

↓ ↓ ↓ ↓ ↓
Hi(∂BX

p (β))→ Hi(BX
p (β))→ Hi(BX

p (β), ∂BX
p (β))→ Hi−1(∂BX

p (β))→ Hi−1(BX
p (β)) (11)

where the vertical maps are induced by the inclusion Xα ↪→ Xβ and the two rows come from the long exact
sequences of the pairs (BX

p (α), ∂BX
p (α)) and (BX

p (β), ∂BX
p (β)) ([27]).

Suppose that the middle vertical map fails to be an isomorphism. Then the Five-Lemma ([27], p.140) tells us
that at least one of the other four vertical maps will also fail to be an isomorphism. In other words, any change
within the relative module must be accompanied by a simultaneous change in at least one of the two absolute
modules. The inequality follows.

This theorem together with the definition of ρ(p, q, r) implies the following inequality

ρ(p, q, r) ≥ min{σi(p, r), σb(p, r), σi(p, q, r), σb(p, q, r)}. (12)

D.2 Proof
To prove Theorem 3.3, we will further lower bound the σ-parameters above. This is accomplished via one more
lemma.

Lemma D.1 (Deformation Lemmas) The following four claims all hold for every small enough δ > 0. In each
of the claims, the homotopy equivalence is given by a deformation retraction:

∀α < min{τ(p, r), η(p, r)}, (Xα ∩Br(p)) ' (Xδ ∩Br(p)),
∀α < min{τ0(p, q, r), η(p, r)}, (Xα ∩ ∂Br(p)) ' (Xδ ∩ ∂Br(p)),
∀α < min{τ(p, q, r), η(p, q, r)}, (Xα ∩Br(p) ∩Br(q)) ' (Xδ ∩Br(p) ∩Br(q)),
∀α < min{τ0(p, q, r), η(p, q, r)}, (Xα ∩ ∂(Br(p) ∩Br(q))) ' (Xδ ∩ ∂(Br(p) ∩Br(q))).

PROOF. All four claims follow from Stratified Morse Theory [19]. We prove only the first claim; the other
three can be proven with only slight modifications. Consider the stratification of Br(p) with singular set Σ =
M(p, r) ∪ ∂Br(p) and whatever further decomposition of Σ is needed. Setting d = dX|Br(p) : Br(p)→ R, we
note that the sets Xα ∩ Br(p) are simply the sublevel sets of d for various parameters α. Generically, d will be
a Stratified Morse function on Br(p) with its above stratification. Consider the set H of all critical points of d
which have positive d-value.

We claimH ⊂ (M(p, r)∪G(p, r)) : to see this, we suppose y ∈ H and we assume first that y is in the interior
of Br(p). Then y is also a critical point of the globally defined function dX, and since d(x) = dX(x) > 0, we
know that y ∈M. Since y is also in Br(p) by assumption, we know in fact that y ∈M(p, r). On the other hand,
suppose that y ∈ ∂Br(p); we can also assume that y 6∈ M(p, r) or we are already done. Then by definition y is a
critical point of the restriction of dX to ∂Br(p). Since the gradient of this latter function is simply the projection
of∇dX onto ∂Br(p), we can conclude y ∈ G(p, r).

In other words, if α < {τ(p, r), η(p, r)}, then (Xα ∩ Br(p)) ∩H = ∅, and hence the interval [δ, α] contains
no critical values of d. The claim then follows from the first fundamental theorem of Stratified Morse Theory
[19].

Finally, we finish the proof of Theorem 3.3, which we restate here for convenience.

Theorem D.2 (Geometric lower bound) If we define

γ = γ(p, q, r) = min{τ(p, r), τ(p, q, r), η(p, r), η(p, q, r)},

then ρ(p, q, r) ≥ γ(p, q, r).
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PROOF.
Note that τ(p, r) ≤ τ0(p, r) and τ(p, q, r) ≤ τ0(p, q, r) so we need not consider τ0(p, r) and τ0(p, q, r).
Recall σi(p, r) and σb(p, r) were defined to be the feature sizes of the persistence modules {H(BX

p (α))} and
{H(∂BX

p (α))}, respectively.
By the first and second of the Deformation Lemmas the following holds

σi(p, r), σb(p, r) ≥ min{τ(p, r), η(p, r)}.

For the same reason
σi(p, q, r), σb(p, q, r) ≥ min{τ(p, q, r), η(p, q, r)}.

These inequalities, together with (12)

ρ(p, q, r) ≥ min{σi(p, r), σb(p, r), σi(p, q, r), σb(p, q, r)},

prove the theorem, ρ(p, q, r) ≥ γ(p, q, r).

Acknowledgments
All the authors would like to thank Herbert Edelsbrunner and John Harer for useful discussions and suggestions.
PB would like to thank David Cohen-Steiner and Dmitrity Morozov for helpful discussion, and SM would like
to thank Shmuel Weinberger for useful comments. SM and BW would like to acknowledge the support of NIH
Grants R01 CA123175-01A1 and P50 GM 081883, and SM would like to acknowledge the support of NSF Grant
DMS-07-32260. PB thanks the Computer Science Department at Duke University for hosting him during the
Spring semester of 2010.

References
[1] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data representa-

tion. Neural Computation, 15:1373–1396, 2002.

[2] Mikhail Belkin and Partha Niyogi. Towards a theoretical foundation for laplacian-based manifold methods.
Journal of Computer and System Sciences, 74(8):1289–1308, 2008.

[3] Paul Bendich, David Cohen-Steiner, Herbert Edelsbrunner, John Harer, and Dmitriy Morozov. Inferring lo-
cal homology from sampled stratified spaces. In Proceedings 48th Annual IEEE Symposium on Foundations
of Computer Science, pages 536–546, 2007.

[4] Jean-Daniel Boissonnat, Olivier Devillers, and Samuel Hornus. Incremental construction of the delaunay
triangulation and the delaunay graph in medium dimension. Proceedings 25th Annual Symposium on Com-
putational Geometry, pages 208–216, 2009.

[5] Frédéric Chazal, David Cohen-Steiner, Marc Glisse, Leonidas J. Guibas, and Steve Y. Oudot. Proximity
of persistence modules and their diagrams. In Proceedings 25th Annual Symposium on Computational
Geometry, pages 237–246, 2009.
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